摘要
利用插点方法和H序列,证明了如果G是n阶简单图,κ=κ(G)≥k≥2.而(a1,a2,…,ak+1)是H序列.若对于任意的Y∈I(ke+)1(G),有∑k+1i=1aisi(Y)+sk+1(Y)>n+κ+k-3,则G是Hamilton图.该定理也是对这方面已有的某些定理的有效推广.
Using the vertex inserting method and the concept of H- sequence, one new sufficient condition for Hamilton graphs is proved. If G is the simple graph on n vertices, k =k (G)≥k≥2. In addition (a1,a2,...,ak+1) is the H-sequence. For any Y∈I(k+1)^(e)(G),if∑i=1^(k+1)aisi( Y) + sk+l( Y) 〉 n +k + k - 3 ,then G is Hamiltonian. This theorem is the effective popularization of relevant theorems in this aspect.
出处
《上海理工大学学报》
CAS
北大核心
2005年第4期305-308,共4页
Journal of University of Shanghai For Science and Technology
关键词
邻域交
插点方法
H-序列
neighborhood intersection
vertex insertion
H-sequence