期刊文献+

带新的非线性互补函数的广义非精确牛顿法 被引量:1

Inexact Generalized Newton Method with New NCP Function
下载PDF
导出
摘要 提出了新的弱正则伪光滑非线性互补(NCP)函数,该函数具有良好的性质.在这个新的NCP函数基础上,求解一个目标函数和约束函数都是光滑的最优化问题.构造半光滑方程组,用来求解非线性约束最优化问题的KKT点,然后用新提出的广义非精确牛顿法解这个半光滑方程组.该方法是可实现的,且具有全局收敛性.最后还证明了在较弱假设条件下,它具有局部超线性收敛性. In this paper,we present a new nonlinear complementarity (NCP) function which is piecewise linear-rational, regular pseudo-smooth and has nice properties. Then we apply the NCP function to some nonlinear optimization methods. We reformulate the problem for finding KKT points of the nonlinear constrained optimization problem as a system of semismooth equations by using the new NCP function. Then we consider the local behavior of inexact generalized Newton methods to solve the semismooth equations. The method is implementable and globally convergent. We also prove that the algorithm has superlinear convergence rates under some mild conditions.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第8期1109-1113,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金资助项目(10371089)
关键词 约束非线性规划 半光滑 非线性互补 收敛性 constrained nonlinear programming semismooth nonlinear complementarity convergence
  • 相关文献

参考文献6

  • 1Fischer A.A special Newton-type optimization method[J].Optimization,1992,24:269-285.
  • 2PU Ding-guo,ZHANG Jian-zhong.An inexact generalized Newton method for second order C-Differentiable optimization[J].J of Computational and Applied Mathematics,1998,93:107-122.
  • 3PU Ding-guo,ZHANG Jian-zhong.Inexact generalized Newton method for first-order differentiable optimization problem[J].Journal of Opeimization Theory and Applications,2000,106:551-568.
  • 4PU Ding-guo,TIAN Wei-wen.Gallobally inexact generalized Newton method for nonsmooth equation[J].J of Computational and Applied Mathematics,2002,138:37-49.
  • 5濮定国,李康弟,薛文娟.解约束优化问题的QP-free非可行域方法[J].同济大学学报(自然科学版),2005,33(4):525-529. 被引量:8
  • 6Ding-guoPu YanZhou Hai-yanZhang.A QP FREE FEASIBLE METHOD[J].Journal of Computational Mathematics,2004,22(5):651-660. 被引量:11

二级参考文献6

  • 1Ding-guoPu YanZhou Hai-yanZhang.A QP FREE FEASIBLE METHOD[J].Journal of Computational Mathematics,2004,22(5):651-660. 被引量:11
  • 2Panier E R,Tits A L,Herskovits J N.A QP-free,globally,locally superlinear convergent method for the inequality constrained optimization problems[J].SIAM Journal on Control Optimization,1988,36:788-811.
  • 3Qi H,Qi L.A new QP-free,globally convergent,locally superlinearly convergent algorithm for inequality constrained optimization[J].SIAM Journal on Optimization,2000,11:113-132.
  • 4Fischer A.A special Newton-type optimization method[J].Optimization,1992,24:269-284.
  • 5Pu D,Zhang J.An inexact generalized Newton method for second order C-Differentiable optimization[J].Journal of Computational and Applied Mathematics,1998,93:107-122.
  • 6Ding-guoPu Sheng-huaGui Wei-wenTian.A CLASS OF REVISED BROYDEN ALGORITHMS WITHOUT EXACT LINE SEARCH[J].Journal of Computational Mathematics,2004,22(1):11-20. 被引量:8

共引文献15

同被引文献7

  • 1Ding-guoPu YanZhou Hai-yanZhang.A QP FREE FEASIBLE METHOD[J].Journal of Computational Mathematics,2004,22(5):651-660. 被引量:11
  • 2Qi L. Convergence analysis of some algorithms for solving nonsmooth equations [J ]. Mathematics of Operations Research, 1993,18 : 227.
  • 3Qi L, Sun J. A nonsrnooth version of Newton' s method[ J ]. Mathernatieal Programming, 1993,58:353.
  • 4Pu D, Zhang J. An inexact generalized Newton method for second order C-Differentiable optimization[J]. Journal of Computational and Applied Mathematics, 1998,93 : 107.
  • 5Pu D,Zhang J. Globally convergent inexact generalized Newton method for first-order differentiable optimization problem [ J ]. Journal of Optimization Theory and Applications, 2000,106 (3) : 551.
  • 6Pu D. The convergence of Broyden algorithms for LC Gradient Function[J]. ACTA Mathematical Application Sinica, 2000, 16 (3):313.
  • 7Pu D,Tian W. Globally convergent inexact generalized Newton's method for nonsmooth equation[J]. Journal of Computational and Applied Mathernatics,2002,138 : 37.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部