期刊文献+

紫外吸收光谱法在高通量筛选中的应用

Application of UV Absorption Spectrum to High Through-Put Screening
下载PDF
导出
摘要 与传统化合物的单独合成及结构性能测定相比,高通量筛选技术具有简化并缩短发现目标化合物过程的特点.以紫外吸收光谱法为手段,利用高通量筛选技术考察了CoCe/HZSM5对甲烷还原NOx反应的催化活性.研制了专用的平行反应器,使每个反应通道的反应温度相同,气体空速相近;建立了一种高通量初级筛选催化剂库的快速方法,初步评价了不同Co/Ce比的CoCe/HZSM5催化剂样品的催化活性.结果表明,当w(Co)=2.5%及m(Co)/m(Ce)=2时,催化剂的活性最高,其活性因数达到了0.67. The combinatorial chemistry and high through-put screening technique have received considerable attention owing to their potential application. In an effort to discover new materials with useful properties, the combinatorial chemistry has been established as one of the most important methodology, which is capable of decreasing the discovery process in hundreds and thousands times. In this paper, the development of a high through-put screening technique for heterogeneous catalysts based on the UV absorption spectrum technique, named UV absorption array, is reported. The application of the high through-put screening technique in combinatorial discovery of active catalysts for the selective catalytic reduction of NOx with CH4 is also demonstrated. According to the variation of UV light intensity, owing to the UV absorption of organic compounds, the relative quantity of the reactants or the products before and after reaction could be obtained. By using this method, the Co-Ce/HZSM-5 samples with different m (Co)/m (Ce) ratios were investigated. The catalyst with ω(Co) = 2.5 % and m (Co)/m (Ce)= 2 showed remarkable activity and its active factor R was up to 0.67. This simple and cheap multiple channel setup can also be applied for the selection of other heterogeneous catalysts by changing the UV source.
出处 《催化学报》 SCIE CAS CSCD 北大核心 2005年第8期688-692,共5页
基金 国家高技术研究发展规划项目(863计划)(2002AA321020).
关键词 组合化学 高通量筛选技术 紫外吸收光谱法 甲烷 氮氧化物 选择性催化还原 combinatorial chemistry, high through-put screening technique, ultraviolet absorption spectroscopy,methane, nitrogen oxide, selective catalytic reduction
  • 相关文献

参考文献24

  • 1张涛,任丽丽,林励吾.甲烷选择催化还原NO研究进展[J].催化学报,2004,25(1):75-83. 被引量:22
  • 2Merrifield R B. J Am Chem Soc, 1963, 85(14): 2149.
  • 3Geysen H M, Meloen R H, Barreling S J. Proc Natl Acad Sci USA, 1984, 81(13):3998.
  • 4Terrett N K, Gardner M, Gordon D W, Kobylecki R J,Steele J. Tetrahedron, 1995, 51(30): 8135.
  • 5Ellman J A. Acc Chem Res, 1996, 29(3):132.
  • 6Balkenhohl F, von dem Bussche-Htinnefeld C, Lansky A,Zechel C. Angew Chem, lnt Ed Engl, 1996, 35(20):2288.
  • 7齐随涛,杨伯伦,卓颖.组合催化的原理、策略与发展[J].现代化工,2003,23(12):58-60. 被引量:1
  • 8Thomson S, Hoffmann C, Ruthe S, Schmidt H-W, Schtith F. Appl Catal A, 2001, 220(1/2) : 253.
  • 9Service R F. Science, 1997, 277(5325): 474.
  • 10Claus P, Honicke D, Zech T. Catal Today, 2001, 67(4) :319.

二级参考文献33

  • 1陈笃慧(Chen D H).环境科学进展( Advan Environ Sci),1997,5(3):29-29.
  • 2叶代启(Ye D Q).环境保护科学( Environ Protect Sci),1999,26(4):1-1.
  • 3易红宏 宁平 陈亚雄(Yi H H Ning P Chen Y X).环境科学动态( Environ Sci Trends),1998,(4):17-17.
  • 4刘钰 杨向光 张忠良 吴越(Liu Y Yang X G Zhang Zh L Wu Y).催化学报( Chin J Catal),1999,20(4):450-450.
  • 5屠兢 伏义路 林培琰(Tu J Fu Y L Lin P Y).催化学报( Chin J Catal),2001,22(4):390-390.
  • 6TerrettNK CombinatorialChemistry 许家喜 麻远译.组合化学[M].北京:北京大学出版社,1999..
  • 7[1]王建新,傅立新,黎维彬.汽车排气污染治理及催化转化器.北京:化学工业出版社,2000:1-317.
  • 8[2]Ronald M.Heck,Robert J.Farrauto.Appl.Catal.A,2001:443-457.
  • 9[3]A.Fritz,V.Pitchon.Appl.Catal.B.1997(13):1-25.
  • 10[5]Shigeru Nojima,Kozo lida,Norihisa Kobayashi et al.Mitsubishi Heavy Industries Ltd.Technical Review,2001,38(2):87-91.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部