摘要
电力系统动态仿真既是电力系统动态安全分析与控制的基本工具,也是电网调度部门指导电力生产的主要依据,因此,动态仿真的准确程度直接关系到电力系统的安全经济运行。然而电力系统是高维、多变量的复杂非线性系统,影响其仿真可信度的因素众多,因此分析电力系统动态过程对参数、特别是对控制器参数的灵敏度尤为重要。文中通过比较任意摄动参数在微分代数方程动态解的泰勒展开多项式中的系数,获得求取电力系统动态灵敏度的方程,解决了参数奇异点处的灵敏度计算问题。并进一步对方程的动态特性,特别是对电力系统控制器参数的灵敏度进行了讨论。依据所提出的方法,以单机对无穷大系统与IEEE10机39节点系统为例,计算了IEEE-EA型励磁系统参数对系统动态过程的影响,并对其动态特征进行了分析。
Dynamic simulation is not only the basic tool for the analysis and control of power system dynamic security, but also the key reference for system operation in a power dispatching center. The accuracy of the dynamic simulation thus greatly influences the economical operation as well as the security of power system. It's important to find the parameters, especially those of controllers, which affect the accuracy of the simulation most. This paper presents a novcl view on calculating the sensitivity of the system dynamics with respect to the system parameters by converting the dynamic equation into an algebraic polynomial, then equalizing the coefficients of the disturbance of the parameters. The method proposed can be used to calculate the sensitivity at singular points, where analytic derivatives do not exist. Taking OMIB system and IEEE 10-machine 39-bus system as examples, this paper further calculates the sensitivity of the system dynamics with respect to the parameters of an IEEE-EA type excitation system. The characteristics of such sensitivity are analyzed in detail.
出处
《电力系统自动化》
EI
CSCD
北大核心
2005年第17期20-27,共8页
Automation of Electric Power Systems
基金
国家重点基础研究发展计划专项资助项目(2004CB217901)华北电力大学校内基金资助项目(Dr2004-11)~~
关键词
电力系统
动态仿真
灵敏度分析
power systems
dynamic simulation
sensitivity analysis