期刊文献+

方位关系约束满足问题的推理求解 被引量:1

Reasoing Method for Resolving Orientation Relation Constraint Satisfaction Problems
下载PDF
导出
摘要 约束满足问题(Constraint Satisfaction Problems CSP)是人工智能的一个研究领域,诸如空间查找、规划等问题都可转化为约束满足问题。方位关系是空间关系的重要组成部分,用以确定空间对象间的一种顺序。本文研究了空间方位关系模型,给出了方位关系约束的一般表示形式。在此基础上,利用组合表推理给出了方位关系约束满足问题的一个推理求解算法,该算法的时间复杂度为O(n^2)。 Constraint Satisfaction Problems (CSP)is a research domain of artificial intelligence. For example, spatial query, planning can be transformed into CSP. Orientation relation is important part of spatial relation, used to confirm the sequence between spatial objects. This paper has a research on the model of spatial orientation relation, and gives a general representation form about orientation relation constraint. Based on this, a reasoning algorithm to orientation relation constraint satisfaction problems is represented by using combinative table reasoning. The time complex of the algorithm is O(n^2 ).
出处 《计算机科学》 CSCD 北大核心 2005年第8期170-172,181,共4页 Computer Science
基金 国家自然科学基金(编号:50378093)
关键词 约束满足问题 方位关系 定性空间推理 组合表 求解算法 推理 空间关系 时间复杂度 人工智能 组成部分 Constraint satisfaction problems, Orientation relation, Qualitative spatial reasoning, Combinative table
  • 相关文献

参考文献10

  • 1Pullar D, Egenhofer M. Toward formal definitions of topological relations among spatial objects. In: Proc. of the Third Intl. Symposium on Spatial Data Handling, Sydney, Australia, Aug. 1988.
  • 2Egenhofer M, Herring J. A mathematical framework for the definition of topological relationships. In: Proc. of the Fourth Intl.Symposium on Spatial Data Handling, Zurich, Switzerland, July 1990.
  • 3Papadias D, Sellis T. The semantics of relations in 2-D space using representative points: Spatial indexes. In: Proc. of the European Conf. on Spatial Information Theory, Elba, Italy, 1993.
  • 4Kainz W, Egenhofer M, Greasley I. Modeling spatial relations and operations with partially ordered sets. International Journal of Geographical Information Systems, 1993,7 (3): 215~229.
  • 5Frank A. Qualitative Spatial Reasoning about Distance and Directions in Geographic Space. Journal of Visual Languages and Computing, 1992,3:343~373.
  • 6Guo P, Huang-Fu T, Luo Y. A reasoning method for resolving spatial constraint satisfactory problem. In: the Proc. of the Third Intl. Conf. on Machine Learning and Cybernetics, Shanghai,2004. 2262~2268.
  • 7Vilain M, Kautz H, van Beek P. Constraints Propagation algorithms for temporal reasoning: A revised report. In:Weld D S, de Kleer J, eds. Readings in Qualitative Reasoning about Physical Systems, Morgan Kaufmann, 1990. 373~383.
  • 8Kumar V. Algorithms for constraint satisfaction problems: A survey. Artificial Intelligence, 1992,13(1): 32~44.
  • 9Hertzberg J, Gusgen H W, et al. Relaxing constraint networks to resolve inconsistencies. In:Proc. GWAI-88, Eringerfeld, Germany, 1988. 61~65.
  • 10Liu X, Shekhar S, Chawla S. Consistency Checking for Euclidean Spatial Constraints: A Dimension Graph Approach. In: the Proc.of 12th IEEE Intl. Conf. on Tools with Artificial Intelligence (ICTAB'00), Canada, 2000. 333~343.

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部