期刊文献+

基于B-W算法训练连续语音的关键技术

Critical technology of continuous speech training based on B-W
下载PDF
导出
摘要 B—W算法是基于隐含马尔可夫模型连续语音建模所采用的技术.探讨了基于B—W算法的连续语音建模的关键技术———计算溢出及训练样本差异问题,提出了解决方法:对计算溢出可采用对数变换的方法扩展计算机所能表示的数值范围给以解决;差异样本训练可在训练中消除将定样句子单元信息予以解决. Baum-Welch algorithm is a technology based on HMM. This paper discusses the primary technology that trains continuous speech models based on Baum-Welch algorithm. Calculation overflow and different sample training, and provides complete and flexible resolution. Logarithm transform that expands data range in computer is applied to solve the problem of calculation overflow, and different sample training is overcome to eliminate sentence unit information.
出处 《大庆石油学院学报》 CAS 北大核心 2005年第4期121-123,共3页 Journal of Daqing Petroleum Institute
关键词 语音识别 B_W算法 计算溢出 模型参数 speech recognition B-W algorithm calculation overflow model parameter
  • 相关文献

参考文献1

  • 1Huang X D,Jack M A.Semi-continuous hidden Markov models for speech signals[J].Computer Speech and Language,1989,3(2):239-251.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部