摘要
入侵检测系统是当前信息安全领域的研究热点,在保障信息安全方面起着重要的作用。对BP神经网络优化算法进行对比研究的基础上,利用Levenberg-Marquardt算法对传统BP算法进行改进,成功地将LMBP算法运用到基于W indows操作系统的主机入侵检测中去,建立LMBP-HIDS入侵检测系统模型。实验结果表明,运用Levenberg-Marquardt算法优化BP神经网络进行主机入侵检测,可以较好地提高学习速率,缩短训练过程。
Intrusion Detection System (IDS) is one of the research hotspots in the field of Information Security. The Levenberg-Marquardt algorithm was taken to optimize traditional BP Neural Network, and the LMBP algorithm was successfully applied to host intrusion detection systems. Then an LMBP-HIDS intrusion detection systems model was built. The result indicated that by using Levenberg-Marquardt algorithm to optimize BP Neural Network, the BP Neural Network could work more efficiently in Intrusion Detection Systems. It could improve the training speed, shorten the training process.
出处
《计算机应用》
CSCD
北大核心
2005年第9期2078-2079,共2页
journal of Computer Applications
基金
广西区教育厅资助项目(D200126)
关键词
信息安全
入侵检测
神经网络
BP神经网
LM算法
LMBP-HIDS
information security
intrusion detection
neural network
BP Neural Network,
Levenberg-Marquart algorithm
LMBP-HIDS