期刊文献+

Hilbert空间L^2(R^n)上正规窗口的Fourier变换 被引量:3

Normalized windowed Fourier transform in Hilbert space L^2(R)~n
下载PDF
导出
摘要 引入并研究了Hilbert空间L2(Rn)上正规窗口的Fourier变换,讨论了一个L2(Rn)函数的正规窗口的Fourier变换的有界性和连续性,证明了正规窗口Fourier变换的等距性质,并且给出了一个L2(Rn)函数在弱收敛意义下和在强收敛意义下成立的重构公式. The normalized windowed Fourier transform in L^2(R^n) is studied. It is discussed that bounded and continuous properties of the normalized windowed Fourier transform of a L^2(R^n) function. It is proved that the isometric property of normalized windowed Fourier transform. The reconstruction formulas of a L^2(R^n) function in the weak topology and in the strong topology, respectively, is given.
作者 姚喜妍
出处 《陕西师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期10-13,共4页 Journal of Shaanxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(19771056)
关键词 HILBERT空间 正规窗口 FOURIER变换 重构公式 Hilbert space normalized windowed Fourier transform reconstruction formula
  • 相关文献

参考文献6

  • 1Daubechies I. Ten lectures on wavelets[M]. Philadelphia:Pennsylvania Societ y for Industrial and Applied Mathematics, 1992.
  • 2Kaiser G. A friendly guide to wavelets [MJ. Boston:Birkhaiiser, 1994.
  • 3Rudin W. Real and complex analysis[M]. New York:Mograw-Hill Book Company, 1974.
  • 4Partington R J. On the windowed Fourier transform and wavelet transform of Almost periodic functions[J]. Applied and Computational Harmonic Analysis, 2001,10; 45 - 60.
  • 5Sherlock B G. Windowed discrete Fourier transform for shifting data[J]. Signal Processing, 1999, 74: 169-177.
  • 6姚喜妍.正规窗口Fourier变换及其性质[J].陕西师范大学学报(自然科学版),2001,29(2):17-19. 被引量:5

二级参考文献2

  • 1Chui C K,An Introduction to Wavelets,1992年
  • 2刘贵忠,小波分析及其应用,1992年

共引文献4

同被引文献26

  • 1马耀庭,邵毅全.傅里叶变换在应用中的局限性及克服方法[J].内江师范学院学报,2008,23(12):42-44. 被引量:7
  • 2曹怀信,赵书改.规范窗口Fourier变换的反演公式及其值域刻画[J].陕西师范大学学报(自然科学版),2006,34(2):1-4. 被引量:8
  • 3Daubechies I.Ten Lectures on Wavelets[M].SIAM,Philadelphia,1992.
  • 4Gabor D.Theory of commuication[J].Journal IEE,1946,93(3):429-457.
  • 5Rebollo-Neira L,Fernandez Rubio J.On the Inverse Windowed Fourier transform[J].IEEET rans on Information Theory,1999,45(7):2668-2671.
  • 6Gabor D. Theory of communication[J]. Journal of Institute Eleetrial Engineering, 1946, 93(3): 429-457.
  • 7Daubeehies I. Ten Lectures on wavelets[M]. Philadelphia; Society for Industrial and Applied Mathematics, 1992.
  • 8Sun W. Asymptotic properties of Gabor frame operators as sampling density tends to infinity [ J]. Journal of Functional Analysis, 2010, 258: 913-932.
  • 9Kemao A, Haixia W, Wenjing G. Windowed Fourier transform for fringe pattern analysis: theoretical analyses[J]. Applied Optics, 2008,47(29) : 5408-5419.
  • 10Mark A Pinsky. Introduction to Fourier analysis and wavelets[M]. 北京:机械工业出版社,2003.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部