期刊文献+

应用于双线性问题的无变换正则化

Regularization without transformation for bilinear problems
下载PDF
导出
摘要 计算机视觉经常需要解双线性参数估计问题,传统地,这类问题的线性解法是标准的特征值分析算法.通常它使用Hartley变换来实现正则化.通过理论分析和蒙特卡洛实验,证明了所给出的简化特征值分析技术可在无须进行正则化变换的前提下,固有地同时具备噪声预白化功能和数据正则化功能,因此它不但能给出均方误差相当小的无偏估计,而且具有计算快速、实现简单方便的优点. In computer vision, bilinear parameter estimation problems have been traditionally solved using the standard eigen value decomposition (EVD) algorithm. By means of theoretical analysis and Monte Carlo experiments, a proposed simplified EVD technique was demonstrated to intrinsically have the ability, without transformation, to whiten the data noise and to regularize the condition number of bilinear parameter estimation problems. Therefore, it not only can provide an unbiased estimation with very small mean square error(MSE), also has the advantage of fast computation and easy realization.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2005年第4期536-539,共4页 Journal of Harbin Engineering University
基金 计算机视觉技术在港口集装箱装卸自动化中的应用基金资助项目(01G02)
关键词 计算机视觉 双线性参数估计 特征值分解 正则化 简化特征值分解 computer vision bilinear parameter estimation eigen value decomposition simplified eigen value decomposition
  • 相关文献

参考文献9

  • 1MA Y, KLOSECKA J. Optimization criteria and geometric algorithm for motion and structure estimation[J]. International Journal of Computer Vision, 2001, 44(3): 219-249.
  • 2ZHANG Z, LOOP C. Estimation of the fundamental matrix by transforming image points in projective space[J]. Computer Vision and Image Understanding, 2001, 82(2):174-180.
  • 3THOMAS J I, OLIENSIS J. Dealing with noise in multiframe structure from motion[J]. Computer Vision and Image Understanding, 1999, 79(11): 109-124.
  • 4OLIENSIS J. A multiframe structure from motion under perspective projection[J]. Computer Vision and Image Understanding, 1999, 79(11): 163-192.
  • 5SOATTO S, PERONA P. Reducing structure from motion: a general framework for dynamic vision, Part1: modeling, Part 2: Implementation and experiment assessment[J]. IEEE Trans Pattern Analysis and Machine Intelligence,1998: 933-942, 943-960.
  • 6CHENG Y C, LEE S C. A new method for quadratic curve detection using K-RANSAC with acceleration techniques[J]. Pattern Recognition,1995, 28(5): 663-682.
  • 7YANG Z.Robustly exactly and real-timely extracting lines and conics from a gray-level image[J]. IEEE ICNNSP'95, 1995,11(12):1410-1413.
  • 8HARTLEY R I. In defense of eight-point algorithm[J]. IEEE Trans Pattern Analysis and Machine Intelligence,1997, 19(6): 580-593.
  • 9LEEDAN Y, MEER P. Heteroscedastic regression in computer vision: problems with bilinear constraint[J]. International Journal of Computer Vision, 2000, 37(2): 127-150.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部