期刊文献+

基于距离的异常数据挖掘算法及其应用 被引量:12

ALGORITHMS FOR MINING DISTANCE-BASED OUTLIER AND ITS APPLICATION
下载PDF
导出
摘要 给出了基于距离的异常数据的数量化定义,提出了基于距离的多指标的异常数据挖掘算法,这种算法适合于一般的海量数据库中的数据分析,以学生考试成绩作为实例进行了分析,可以从中动态地挖掘异常数据。作为特例,把单指标的异常数据挖掘算法应用于校园网Web服务器日志文件,给出了上网用户的频率分析图。 The quantitative definition of outlier data based on the distance was presented. The multi-criterion algorithm for mining outlier data based on the distance was also proposed. The proposed algorithm was very fit for data analysis in large database, and was applied to the student score in order to mining dynamic outliers. As for special example, the single-criterion algorithm for mining outlier data based on the distance was applied to the Web service log in campus networks. The frequency analysis chart including outlier data sign was presented.
出处 《计算机应用与软件》 CSCD 北大核心 2005年第9期105-107,共3页 Computer Applications and Software
关键词 异常数据挖掘 WEB日志 学生成绩 上网行为模式 数据挖掘算法 异常数据 距离 应用 WEB服务器 海量数据库 Outlier data mining Web log Student score Behavior mode of getting Internet
  • 相关文献

参考文献3

二级参考文献32

  • 1Hawkins D. Identification of Outliers. London: Chapman and Hall,1980.
  • 2Aming A, Agrawal R. Raghavan P. A Linear Method for Deviation Detection in Large Databases. Proceedings of the 2^rd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon:AAAI Press, 1996:144-169.
  • 3Knorr E, Ng R. Finding Intensional Knowledge of Distance-based Outliers. VLDB Confi~rence Proceedings, 1999.
  • 4Knorr E, Ng R. Algorithms for Mining Distance-based Outliers in Large Data Sets. VLDB Conference Proceedings, 1998.
  • 5Fayyad, U., Piatetsky-Shapiro, G., Smyth, P. Knowledge discovery and data mining: towards a unifying framework. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 82~88.
  • 6Ng, R. T., Han, J. Efficient and effective clustering methods for spatial data mining. In: Bocca, J.B., Jarke, M., Zaniolo, C., eds. Proceedings of the 20th International Conference on Very Large Data Bases. Santiago: Morgan Kaufmann, 1994. 144~155.
  • 7Ester, M., Kriegel, H.-p., Sander, J., et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M., eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland, Oregon: AAAI Press, 1996. 226~231.
  • 8Zhang, T., Ramakrishnan, R., Linvy, M. BIRCH: an efficient eata clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S., eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Montreal: ACM Press, 1996. 103~114.
  • 9Wang, W., Yang, J., Muntz, R. STING: a statistical information grid approach to spatial data mining. In: Jarke, M., Carey, M.J., Dittrich, K.R., et al., eds. Proceedings of the 23rd International Conference on Very Large Data Bases. Athens, Greece: Morgan Kaufmann, 1997. 186~195.
  • 10Sheikholeslami, G., Chatterjee, S., Zhang, A. WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: Gupta, A., Shmueli, O., Widom, J., eds. Proceedings of the 24th International Conference on Very Large Data Bases. New York : Morgan Kaufmann, 1998. 428~439.

共引文献52

同被引文献67

引证文献12

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部