期刊文献+

抽油管缺陷检测的多传感器融合技术 被引量:1

Multi-sensor Fusion Technology for Oil-well Tubing Inspection
下载PDF
导出
摘要 将多传感器信息融合技术应用于抽油管缺陷在线检测系统。油管缺陷定量检测的多传感器信息融合模型的建立分别在数据层、特征层和决策层三个融合层次上进行;选取4路传感器信号进行信号直接融合,通过硬件直接形成油管的偏磨信号;建立了基于插值法的偏磨缺陷的定量分析方法,并给出了实测结果。对于坑状缺陷,通过对28路传感器所观测的目标进行统一的特征融合,提取特征向量,利用神经网络的决策模型完成了坑状缺陷的量化分析。 The data fusion models that we used quantitative recognition to detects ol oil-well tubing were based on data fusion layer, feature fusion layer, decision fusion layer. 28 hall sensors were contributed on oil-well tubing to collect signals. Signals from 4 channels were fusioned together directly through hardware and output signals of abrasion on oil-well tubing. Lagrange interpolating formula was applied estimate to the size of abrasion defects by experiments. Signals from 28 channels were used to pickup feature information to pits on oil-well tubing. The decision model based on neural-network was applied to estimate the size of pit defects.
作者 杨涛 高殿斌
机构地区 天津工业大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2005年第17期1512-1515,共4页 China Mechanical Engineering
关键词 抽油管 无损检测 多传感器融合 缺陷 oil-well tubing nondestructive testing multi-sensor fusion defect
  • 相关文献

参考文献3

二级参考文献10

共引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部