期刊文献+

基于贝叶斯模型的专利分类 被引量:13

Patent categorization based on Bayes model
下载PDF
导出
摘要 朴素贝叶斯分类器理论基础好,分类精度高。利用特征词权重函数修改朴素贝叶斯分类器,进而利用它实现专利文本的自动分类,不仅减少了专利人工分类的工作量和分类错误,而且为技术跟踪、竞争分析等提供了有效支持。实验与应用表明改进的朴素贝叶斯分类器用来解决专利分类是有效的。 Based on naive bayes classifier having solid theory foundation and high accuracy rate of classification, the classical naive bayes classifier was firstly improved by using term weight function in text, and then the patent categorization was implemented. This approach not only reduced manual labor and the categorization error, but also supported for the technology tracing, competition intelligence etc.The experiments and applications illustrate that the improved naive bayes classifier can be utilized to classify patents efficiently.
出处 《计算机工程与设计》 CSCD 北大核心 2005年第8期1986-1987,1996,共3页 Computer Engineering and Design
基金 国家自然科学基金项目(60003019)
关键词 专利 朴素贝叶斯分类器 专利分类 特征词权重 文本挖掘 patent naive bayes classifier patent classification term weight function text mining
  • 相关文献

参考文献6

  • 1Caterina Camus, Riccardo Brancaleon. Intellectual assets management: from patents to knowledge[J]. World Patent Information, 2003,(25):155-159.
  • 2Michele Fattori,Giorgio Pedrazzi,Roberta Turra. Text mining applied to patent mapping: a practical business case[J].World Patent Information, 2003,(25):335-342.
  • 3Martin Meyer,Jan Timm Utecht,Tatiana Goloubev. Free patent information as a resource for policy analysis[J].World Patent Information, 2003,(25):223-231
  • 4暴海龙,李金林.专利检索中的IPC和主题词识别方法研究[J].北京理工大学学报(社会科学版),2003,5(5):74-76. 被引量:11
  • 5JiaweiHan MichelineKambr.数据挖掘-概念与技术[M].高等教育出版社,2001..
  • 6Nigam Kamal Mccallum, Andrew Kachites, Thrun, et al. Text classification from Labeled and Unlabeled Documents using EM[J]. Machine Learning, 2000,39(2/3): 103-134.

二级参考文献4

共引文献20

同被引文献116

引证文献13

二级引证文献108

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部