摘要
小波图像去噪已经成为图像去噪的主要方法之一。利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边缘信息,但现有的去噪声方法忽略了小波系数之间的相关性。针对这一不足,在小波域隐Markov树模型(HMT) 的基础上提出了一种图像去噪新方法。实验结果表明,与普通的小波去噪方法相比,该方法不但可以保留图像的边缘信息,而且能提高去噪后图像的峰值信噪比。
Wavelet image denoising has been well acknowledged as an important method of image denoising. Although it can preserve the edge information, the present methods ignore the relativity of the wavelet coefficients. According to the deficiency, a new image denoising method is proposed based on Hidden Markov Tree. The experimental results show that, compared with the usual denoising method, the proposed method can keep images edges from damaging and increase PSNR.
出处
《信息安全与通信保密》
2005年第9期108-109,共2页
Information Security and Communications Privacy
基金
西北工业大学研究生创业种子基金资助