期刊文献+

兰州储存环主环上小丸内靶的热力学模拟 被引量:2

原文传递
导出
摘要 小丸内靶可配备近4π立体角的探测器,是在兰州储存环主环上进行强子物理实验的主要内靶之一.通过模拟氢小丸内靶从液滴演化到固体小丸的整个热力学过程,给出了氢微球的温度和质量的变化趋势.计算表明:在兰州储存环主环上运用氢小丸内靶进行实验时,实验亮度最大可达到1×1033/(cm2·s).
出处 《中国科学(G辑)》 CSCD 2005年第4期380-389,共10页
基金 中国科学院公派留学基金资助项目
  • 相关文献

参考文献15

  • 1Ekstrom C. Internal targets-a review. Nucl Instrum Meth A, 1995, 362: 1~15.
  • 2Ekstrom C, Fridén C J, Jansson A, et al. Hydrogen pellet targets for circulating particle beams. Nucl Instrum Meth A, 1996, 371: 572~574.
  • 3Trostell B.Vacuum injection of hydrogen micro-sphere beams. Nucl Instrum Meth A, 1995, 362: 41~52.
  • 4Shin H T, Lee Y P, Jurng J. Spherical-shaped ice particle production by spraying water in a vacuum chamber. Applied Thermal Engineering, 2000, 20: 439~454.
  • 5Renksizbulut M, Nafziger R, Li X. A mass transfer correlation for droplet evaporation in high- temperature flows. Chem Eng Sci, 1991, 46(9): 2351~2358.
  • 6Devarakonda V, Ray A K. Effect of inter-particle interactions on evaporation of droplets in a linear array. Aerosol Science, 2003, 34: 837~857.
  • 7Law C K. Recent advances in droplet evaporation and combustion. Prog Energy Combust Sci, 1982, 8: 171~201.
  • 8Souers P C. Hydrogen Properties for Fusion Energy. Berkeley: University of California Press, 1986. 45.
  • 9Arp V D, McCarty R D, Friend D G. Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa. National Institute of Standards and Technology Tech. Note 1334 (revised), 1998, 4: 1~36.
  • 10Campo A, Zamora B. Attainment of maximum levels of natural convective heat transfer across major cavities using as a coolant a mixture of two pure gases instead of air. Heat and Mass Transfer, 2001, 37: 43~51.

同被引文献12

  • 1李希国,徐瑚珊,肖国青,刘新宇.兰州冷却储存环上可开展的强子物理研究[J].原子核物理评论,2005,22(3):243-247. 被引量:6
  • 2Trostell B. Vacuum injection of hydrogen micro-sphere beams. Nucl Instrum Meth A, 1995, 362:41-52.
  • 3Ekstrom C, Friden C J, Jansson A, et al. Hydrogen pellet targets for circulating particle beams. Nucl Instrum Meth A, 1996, 371:572 -574.
  • 4Massey B S. Mechanics of Fluids. 8th Edition. Revised by: Smith J W. London and New York: Taylor & Francis, 2006. 487-550.
  • 5Nakayama Y. Introduction to Fluid Mechanics. Boucher R F, ed. Oxford: Butterworth- Heinemann, 2000. 111-135.
  • 6Miller D R. Atomic and Molecular Beam Methods. Scoles G, ed. New York: Oxford University Press, 1988. 14-53.
  • 7YangJ L, Jaenicke R, Dreiling V, et al. Rapid condensational growth of particles in the inlet of particle sizing instruments. J Aerosol Sci, 2000, 31:773-788.
  • 8Seidel G M, Maris H J, Williams F I B, et al. Supercooling of liquid hydrogen. Phys Rev Lett, 1986, 56:2380-2382.
  • 9Maris H J, Seidel G M, Williams F IB. Experiments with supercooled liquid hydrogen. Phys Rev B, 1987, 36:6799-6810.
  • 10Maris H J, Seidel G M, Huber T E. Supercooling of liquid H2 and the possible production of superfluid H2. J Low Temp Phys, 1983, 51:471-487.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部