期刊文献+

焦磷酸根在即时合成阴离子粘土结构中的嵌入作用 被引量:3

INTERCALATION OF P_2O_7^(4-) IN ANIONIC CLAY STRUCTURE SYNTHESIZED IN SITU
下载PDF
导出
摘要 污染物在矿物结构中的嵌入是固化、净化污染物的一种有前景的矿物学方法。焦磷酸根离子是工业废水中较难处理的工业磷污染源之一,研究新的除磷技术是水污染控制技术领域的重要课题之一。通过人工配制焦磷酸盐废水,初步研究镁-铝盐水解共沉淀法即时合成阴离子粘土去除焦磷酸根的效果、影响因素和焦磷酸根离子在阴离子粘土结构中的嵌入作用。研究结果表明,通过镁-铝盐水解共沉淀法即时合成阴离子粘土,焦磷酸根离子有效地嵌入阴离子粘土结构中,对焦磷酸根有非常好的去除效果。影响处理效果的主要因素是pH值和M g/A l比值。pH值为9.0~10,M g/A l比1∶1~3∶1时,都可以获得较好的去除效果。 Intercalation of pollutants in mineral structure is a novel method of immobilization and purification pollutants. P2O7^4- is an important industrial pollution source because it is difficult to treat it. Developing novel technology for treatment of wastewater containing P2O7^4- is an exigent task in the environmental field. Efficiency and effect factors of polymer phosphate removal from simulated wastewater containing P2O7^4- through Mg^2+ and Al^3+ co-precipitating and P2O7^4- intercalation in anionic clay structure synthesized in situ were investigated in this paper. The resuits indicate that impacting factors on removal efficiency of polymer phosphate are pH and Mg/ Al ratio and polymer phosphate is intercalated into anionic clay structure during Mg and A1 coprecipitation and synthesis anionic clay in situ. The great removal efficiency of polymer phosphate can be obtained when pH value arranges from 9.0-10 and Mg/Al ratios 1 : 1-3 : 1,meanwhile
出处 《矿物岩石》 CAS CSCD 北大核心 2005年第3期105-108,共4页 Mineralogy and Petrology
基金 国家自然科学基金(批准号:40472026)
关键词 阴离子粘土 即时合成 焦磷酸根 嵌入作用 anionic clay synthesis in situ polymer phosphate intercalation
  • 相关文献

参考文献18

  • 1文凤余,岳峰,杨书玲.焦磷酸盐镀铜废水处理方法的研究[J].环境保护科学,1998,24(6):16-17. 被引量:5
  • 2Zhang M,Reardon E J. Removal of B,Cr,Mo and Se from wastewater by incorporation into Hydrocalumite and ettringite[J]. Environmental Science and Technology, 2003,37: 2 947-2 952.
  • 3Komarneni S,Kozai N,Roy R. Novel function for anionic clays:selective transition metal cation uptake by diadochy[J]. Journal of Materials Chemistry, 1998,8(6) : 1 329-1 331.
  • 4Mudakavi J R,Venkateshwar G,Ravindram M. Removal of chromium from electroplating effluents by the sulphide process[J]. Indian Journal of Chemistry and Technology, 1995, (2) :53-58.
  • 5Parker L M,Milestone N B,Newman R H. The use of hydrotalcite as an anion absorben[J]. Industrial and Engineering Chemistry Research,1995,34(4):1 196-1 202.
  • 6You Y W,Zhao H T,Vance G F. Removal of arsenite from aqueous solutions by anionic clays[J]. Environmental Technology, 2001,22(12):1 447-1 457.
  • 7Goswamee RI ,Sengupta P,Bhattacharyya K G, et al. Adsorption of Cr( Ⅵ ) in layer double hydroxides [J]. Applied Clay Science, 1998,13(1):21-34.
  • 8Ulibarri M A,Pavlovic I,Barriga C, et al. Adsorption of anionic species on hydrotalcite-like compounds:effect of interlayer anion and crystallinity [J]. Applied Clay Science, 2001,18(1-2): 17-27.
  • 9Badreddine M. Ion exchange of different phosphate ions into the zinc-aluminium-chloride layered double hydroxide[J]. Materials Letters,1999,38:391-395.
  • 10Yoshimi Seida,Yoshio Nakano. Removal of phosphate by layered double hydroxides containing iron[J]. Water Research,2002,36:1 306-1 312.

二级参考文献22

  • 1NEAMAN A, SINGER A. Rheology of mixed palygorskite-montmorillonite suspensions[J]. Clays Clay Miner, 2000, 48(6): 713-715.
  • 2LATIF A N, WEAVER E C. Kinetic of acid dissolution of palygorskite (attapulgite) and sepiolite[J]. Clays Clay Miner, 1969, 17(1): 169-178.
  • 3CORMA A, MIFSUD A, SAN E. Influence of the chemical-composition and textural-composition and textural characteristic of palygorskite on the acid leaching of octahedral cations[J]. Clay Miner, 1987, 22(2): 225-232.
  • 4CORMA A, MIFSUD A, SANZ E. Kinetic of the acid leaching of palygorskite: influence of the octahedral sheet composition[J]. Clay Miner, 1990, 25(2) : 197-205.
  • 5GONZALEZ F, PESQUERA C, BENITO I, etal. Mechanism of acid activation of magnesium palygorskite[J]. Clays Clay Miner, 1989, 37(3): 258-262.
  • 6GONZALEZ F, PESQUERA C, BENITO I. Thermal investigation of acid-activated attapulgites: influence of isomorphic substitution in the octahedral sheet[J]. Thermochimica Acta, 1992, 194(2): 239-246.
  • 7BARRIOS M S, GONZALEZ L V F, RODRIGUEZ M A V,et al. Acid activation of a palygorskite with HCl: development of physicochemical, textural and surface-properties[J].Appl Clay Sci, 1995, 10(3): 247-258.
  • 8LONG D GF, MCDONALD A M, YI FC, etal. Palygorskite in palaeosols from the Miocene Xiacaowan formation of Jiangsu and Anhui provinces, PR China [J]. Sedim Geol,1997, 112(3-4): 281-295.
  • 9XU H F, WANG Y F. Crystallization sequence and microstructure evolution of Synroc samples crystallized from CaZr ·Ti2O7 melts[J]. J Nucl Mater, 2000, 279(1): 100-106.
  • 10KOSUGE K, SHIMADA K, TSUNASHIMA A, et al.Preparation and characterization of porous silica materials obtained from serpentinite by acid treatment [J]. Nippon Kagaku Kaishi, 1993(4): 335-341.

共引文献74

同被引文献21

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部