期刊文献+

一种基于多特征融合的地形匹配 被引量:2

New Approach of Terrain Matching Based on Multi-features Fusion
下载PDF
导出
摘要 提出了一种多特征融合的地形匹配算法,充分利用地形的各种不同的统计特征和几何特征,构造了一种地形匹配网络模型。通过对实时图和参考图分析,给出了计算网络节点之间的权值函数,建立了网络系统能量方程,通过求系统的最小能量得到最佳匹配位置。由于网络能融合地形的不同统计特征和几何特征,所以算法大大提高了系统的抗干扰能力和定位精度,适合于实时图容易发生畸变的地形匹配领域,实验结果表明,定位精度和抗干扰能力均优于传统的地形匹配方法。 A new terrain matching neural network algorithm mode is constructed by means of muhi-features fusion, which includes different statistical and geometrical features. By analyzing of the real terrain and the reference terrain, the connective weight function between different nodes is deduced, and the energy formula of the network system is structured. The matching position can be acquired by seeking the least system energy. As the algorithm can utilize different features sufficiently, it has higher matching precision, and also better robustness to noise and geometric distortion. The experimental results reveal that its performance is better than that of the conventional.
出处 《航空学报》 EI CAS CSCD 北大核心 2005年第3期340-343,共4页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(60174031) 遥感信息处理国家重点实验室基金(WKL(02)0102)资助项目
关键词 地形匹配 神经网络 多特征融合 最小能量 terrain matching neural network multitudinous features syncretize the least energy
  • 相关文献

参考文献7

  • 1刘准,佀文芳,陈哲.海底地形匹配技术研究[J].系统仿真学报,2004,16(4):700-701. 被引量:18
  • 2Ahnjan H W. Surfaces from stereo: integrating feature matching, disparity estimation, and contour detection[J]. IEEE Trans on PAMI, 1989, 11(2):121-135.
  • 3Olson C F. Landmark selection for terrain matching[A]. IEEE Proceedings of the 2000 Intemational Conference on Robotics and Automation[C]. Canda:IEEE, 2000. 1447-1452.
  • 4Skea D, Kuwahara R, Poceker R. A control point matching algorithm[J]. Pattern Recognition, 1993, 26(2): 269-276.
  • 5Xu H B, Tian Y, Su J Z, et al. Terrain matching based on imaging laser radar[A]. IEEE ICSP'02 Preceedings[C]. China:IEEE, 2002. 1043-1046.
  • 6张俊,陈学广,柳健.雷达地图匹配制导中的共性特征提取与匹配方法[J].电子学报,1999,27(10):58-61. 被引量:4
  • 7王广君,王巍,汪文,尤克非,田金文,柳健.基于Haar小波的地形匹配技术[J].电波科学学报,2002,17(3):240-244. 被引量:5

二级参考文献13

共引文献24

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部