摘要
在0.020 mol·L-1 HCl-4.0×10-4 mol·L-1 KI-1.6×10-5 mol·L-1 Mo(Ⅵ)介质中, 罗丹明6G(RhG)在540 nm处有1个荧光峰, 在540 nm处有1个同步荧光峰. 当有H2O2存在时, H2O2与过量的I-反应生成I-3, I-3与RhG形成缔合微粒, 在320, 400, 595 nm处产生3个共振散射(RS)峰;而在540 nm处荧光峰猝灭. H2O2浓度在0.068~34 μg·mL-1范围内与400 nm波长处的共振散射光强度呈线性关系. 据此建立了一个测定水中H2O2的共振散射光谱分析法. 光谱研究结果表明, (RhG-I3)n缔合微粒和界面的形成是导致体系RS增强和荧光猝灭的根本原因.
Under the conditions of 0.02 mol· L^-1 HCl-4.0 × 10^-4 mol· L^- 1 KI- 1.6 × 10^-5 mol· L^- 1 Mo( Ⅵ ), there is a fluorescence peak at 540 nm and a synchronous fluorescence peak at 540 nm for Rhodamine 6G (RhG). When there exists H2O2, it reacts with I^- to form I3^- . RhG and I3^- combine to form an ion association particle. The particles exhibit three resonance scattering peaks at 320 nm, 400 and 595 nm respectively. And there is fluorescence quenching at 540 nm. H2O2 concentration in the range of 0.068-34 μg.mL^-1 is proportional to the resonance scattering peak at 400 nm. And a new resonance scattering spectral method has been described for the determination of H2O2 in water samples. The spectral results have verified that the formation of (RhG-I3)n association particles and the interface are the main factor that causes the fluorescence quenching and resonance scattering effects.
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2005年第8期1286-1288,共3页
Spectroscopy and Spectral Analysis
基金
国家自然科学基金(200365001
20175018)
广西师范大学博士科研启动基金资助项目
关键词
H2O2
罗丹明6G
缔合微粒
共振散射
荧光猝灭
H2O2
Rhodamine 6G
Association particle
Resonance scattering
Fluorescence quenching