期刊文献+

基于支持向量信息测度排序的快速分类算法

Fast classification algorithm based on the sort of support vector information measure
下载PDF
导出
摘要 如何降低支持向量机海量训练样本的数目,是提高算法速度的关键。提出利用支持向量分布的几何特征建立基于特征空间中支持向量信息测度的快速算法,对于训练样本首先进行基于支持向量信息测度升序排序处理,然后根据训练样本提供的信息测度选择合适的训练样本子空间,在该样本子空间内采用乘性规则直接求取Lagrange因子,而不是传统的二次优化方法;最后针对附加残余样本进行交叉验证处理,直到算法满足收敛性准则。各种分类实验表明,提出的算法具有较好的性能,特别是在训练样本庞大、支持向量数量较多的情况下,能够较大幅度地减少计算复杂度,提高分类速度。 To improve the training speed performance of large-scale support vector machine(SVM), a fast algorithm is proposed by exploiting the geometric distribution of support vector in feature space. A support vector information measure definition is set up and a sort process is presented. Then a reduced number of sample subspace is extracted for support vector training. In addition, instead of the traditional quadratic programming, multiplicative update is used to solve Lagrange multiplier in optimization the solution of support vector. The samples of rest are used for cross validating till the algorithm is convergence. Experimental results demonstrate that this method has better performance and overcome the flaw of standard SVM. This algorithm could greatly reduce the computational load and increase the speed of training, especially in the case of large number of training sample.
作者 胡正平 张晔
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第8期1467-1470,共4页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(60272073)
关键词 支持向量机 核函数 乘性规则 support vector machines kernel function multiplicative update
  • 相关文献

参考文献16

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272
  • 2Vapnik. The nature of statistical learning theory[M]. New York,NY : Wiley, 1998.
  • 3Platt J C. Sequential minimimal optimization:A fast algorithm for training support vector machines [ R ]. Technical Report MSR-TR- 98 - 14. Microsoft Research, 1998.
  • 4Hu W J, Song Q. An accelerated decomposition algorithm for robust support vector machines[J ]. IEEE Trans. on Circuits and Systems-Ⅱ : Express Briefs, 2004 51 (5) : 234 - 240.
  • 5Joachims T. Making large-scale support vector machine learning practical[A]. Scholkopf B, Burges C, Smola A, eds. Advancws in Kernel Methods: Support Vector Machines [ M ]. Cambridge,Massachusetts : MIT Press, 1998. 169 - 184.
  • 6Lin Kuanming, Lin Chihjen. A study of reduced support vector machines[J]. IEEE Trans. on Neural Netzoorks, 2003, 14(6) : 1449- 1459.
  • 7Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293- 300.
  • 8朱永生,王成栋,张优云.二次损失函数支持向量机性能的研究[J].计算机学报,2003,26(8):982-989. 被引量:8
  • 9Boley Daniel, Cao Dongwei. Training support vector machine using adaptive clustering[A]. Proc. of Fourth SIAM International Conference on Data Mining [ C ]. Lake Buena Vista, FL, United States, 2004. 126- 137.
  • 10Pabitra Mitra, Murthy C A, Pal Sankar K. A probabilistic active support vector learning algorithm[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26(3) :413 - 418.

二级参考文献40

  • 1范金城,胡峰.动态测量数据的抗扰性分析研究[J].数理统计与应用概率,1996,11(3):244-248. 被引量:25
  • 2陈开周.最优化计算方法[M].西安:西安电子科技大学出版社,1984.67-87.
  • 3Knorr E M, Ng R T. Algorithms for Mining Distance-based Outiiers in Large Datasets. Proc. VLDB, 1998:392-403.
  • 4Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 1998,2(2):121.
  • 5Moya M R, Koch M W, Hostetler L R. One-class Classifier Networks for Target Recognition Applications. Portland:Proceedings World Congress on Neural Networks, 1993:797-801.
  • 6Tax D, Duin R. Data Domain Description Using Support Vectors.Proc. European Symposium Artificial Neural Networks, 1999:251-256.
  • 7Hearst M A, Dumais S T, Osman E, Platt J, Scholkopf B.Support Vector Machines. IEEE Intelligent Systems, 1998, 13(4) : 18-28.
  • 8Ke Hai-Xin,Zhang Xue-Gong. Editing support vector machines.In: Proceedings of International Joint Conference on Neural Networks, Washington, USA, 2001, 2:1464-1467.
  • 9Vapnik V N. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10 (5): 988-999.
  • 10Vapnik V N. Statistical Learning Theory. 2nd ed. New York:Springer-Verlag : 1999.

共引文献2499

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部