期刊文献+

混合粒子群算法在高维复杂函数寻优中的应用 被引量:13

Hybrid particle swarm optimization algorithm for high-dimension complex functions
下载PDF
导出
摘要 针对粒子群算法应用于复杂函数优化时可能出现过早收敛于局部最优解的情况,提出了一种改进的算法结构。通过构造单个粒子的最优序列代替单一的进化方向和类似于蚁群算法信息素表的选择机制,保留了粒子的多种进化可能方向,提高了粒子间的多样性差异,从而改善算法能力。算法同时设计了最优序列的加入规则和基于粒子群聚度的最优序列动态长度控制方法。改进后的混合粒子群算法保证了算法拥有更强的搜索能力,也保留了粒子群算法高效优化的特点。仿真实验证明,混合粒子群方法相对传统方法而言具有明显的精度优势。 To improve the PSO algorithm which is a new population based optimization algorithm against trapping into local minima, a hybrid method combining ant colony method with PSO-named hybrid PSO (HPSO) is presented. In HPSO the local best query is created to store lbest information for each particle. A strategy is also designed to choose which one in the lbest query may be the local best for PSO evolution process just like pheromone table in ACS. Lbest query keeps some potential good evolving directions in memory and therefore improves the diversity of particles. Furthermore congregation of all particles is calculated to decide the length of lbest query dynamically and acts as the criterion on whether a new solution should be added to the lbest query or not. With these ways PSO can break away from the local minima greatly, Experimental results show that the hybrid PSO is an appropriate method for highdimension complex functions with higher accuracy and speed.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第8期1471-1474,共4页 Systems Engineering and Electronics
基金 教育部博士点基金(20030287008) 航空基金(02F15001 01C15001)资助课题
关键词 高维复杂函数 全局优化 粒子群算法 进化计算 high-dimension complex functions global optimization algorithm particle swarm optimization evolutionary computation
  • 相关文献

参考文献10

  • 1Eberhart R, Kennedy J. A new optimizer using particles swarm theory[C]. Proc. of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 2001. 39 - 43.
  • 2Eberhart R, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]. Proc. of the Congress on Evolutionary Computation, 2000. 84 - 88.
  • 3Kalyan Veeramachaneni, Mohan. Fimess distance ratio based particle swarm optlmization[C]. Proc . of the IEEE Swarm Intelligence Symposium, Indianapolis, Indiana, USA, 2003. 174- 181.
  • 4李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807. 被引量:48
  • 5Robinson J, Sinton S, Rahmat-Samii Y. Particle swarm, genetic algorithm, and their hybrids: optimization of a profiled corrugated horn antenna [C]. IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting,San Antonio, TX , 2002.
  • 6徐宁,李春光,张健,虞厥邦.几种现代优化算法的比较研究[J].系统工程与电子技术,2002,24(12):100-103. 被引量:62
  • 7李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 8Shi Y, Eberhart R. A modified swarm optimizer[C]. IEEE International Conference of Evolutionary Computation Anchorage,Alaska : IEEE Press, 1998.
  • 9吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:450
  • 10Favnden Bergh. Analyses of particles swarm optimizers [ D].South Africa : Department of Computer Science, University of Pretoria, 2002. 81 - 83.

二级参考文献30

  • 1秦寿康.最优化理论与方法[M].北京:电子工业出版社,1986..
  • 2刑文训 谢金星.现代化计算方法[M].北京:清华大学出版社,1999..
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 4[2]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C]. Perth, 1995. 1942-1948.
  • 5[3]Rainer Storn, Kenneth Price. Different evolution--A simple and efficient heuristic for global optimization over continuous space[J]. J of Global Optimization, 1997,(11): 341-359.
  • 6[5]Wang Tao. Global Optimization for Constrained Nonlinear Programming[M]. Doctoral Dissertation: University of Illinois at Urbana-Champaign, 2001.
  • 7[6]Deb K, Agrawal S. A niched-penalty approach for constraint handling in genetic algorithms[A]. Proc of the ICANNGA-99[C]. Portoroz, 1999. 234-239.
  • 8[7]Keane A J. Experiences with optimizers in structural design[A]. Proc of the Conf on Adaptive Computing in Engineering Design and Control 94[C]. Plymouth, 1994.14-27.
  • 9[8]Michalewicz Z, Schoenauer M. Evolutionary algorithms for constrained parameter optimization problems[J]. Evolutionary Computation,1996,4(1):1-32.
  • 10[9]Michalewicz Z,Eaguvel S, et al. The spirit of evolutionary algorithms[J]. J of Computing and Information Technology,1999,7(1): 1-18.

共引文献925

同被引文献106

引证文献13

二级引证文献157

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部