期刊文献+

基于II型最优正规基的串行乘法器 被引量:1

Serial multiplier based on II-type optimal normal basis
下载PDF
导出
摘要 研究有限域(定义在GF(2)上的m维向量空间)的正规基乘法器。基于域元素的正规基表示和多项式基表示可以相互转换,通过分析多项式基下的乘法运算公式,得到利于串行乘法器设计的有效性质。利用该性质,提出了一个新的串行正规基乘法器,该乘法器要求(2m-2)个二值输入的异或门,m个二值输入的与门。在进行具体的硬件实现时,所需要的存储空间为3m+1。 The efficient normal basis multiplier is studied. Based on the fact that the normal basis representation of the field elements can convert to the polynomial basis representation, and vice versa, the multiplying formula is analyzed carefully, and some efficient properties for designing serial multiplier are obtained. Using these properties, a new Ⅱ-type optimal normal basis serial multiplier is proposed, which needs (2m -2) XOR gates and m AND gates. The storage space of the multiplier is 3 m + 1 in hardware implementation.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第8期1494-1496,共3页 Systems Engineering and Electronics
关键词 密码学 有限域 最优正规基 乘法器 复杂性 cryptography finite field optimal normal basis multiplier complexity
  • 相关文献

参考文献7

  • 1Menezes A J. Applications of finite fields[ M]. Boston : Kluwer Academic, 1993.
  • 2Lidl R, Niederreiter H. Introduction to finite fields and their applications[M]. New York : Cambridge University Press, 1994.
  • 3Omura J, Massey J. Computational method and apparatus for finite field arithmetic[Z]. US Patent Number 4,587,627, 1986.
  • 4Koc C K, Sunar B. Low-complexity bit-parallel canonical and normal basis multipliers for a class of finite fields[J]. IEEE Trans. on Computers, 1998, 47(3): 353-356.
  • 5Sunar B, Koc C K. An efficient optimal normal basis type Ⅱ multiplier[J]. IEEE Trans. on Computers, 2001, 50(5) : 83 - 87.
  • 6Reyhani-Masoleh A. Efficient algorithms and architectures for field multiplication using gaussian normal bases [ R ]. Technical Report CORR 2004-04, Dept. of C&O, Univ. of Waterloo, Canada, 2004.
  • 7Reyhani-Masoleh A, Anwar Hasan M. A new construction of massey-omura parallel multiplier over GF ( 2 m ) [ j ]. IEEE Trans.on Computers, 2002, 51(5): 511-520.

同被引文献6

  • 1MASOLEH A R. Efficient Algorithms and Architectures for Field Multiplication Using Gaussian Normal Bases[J]. IEEE Transactions on Computers, 2006,55 (1) : 34 - 47.
  • 2KOC C K,SUNAR B. Low-Complexity Bit-Parallel Canonical Normal Basis Multipliers for a Class of Finite Fields[J]. IEEE Transactions on Computers, 1998,47(3) : 353 - 356.
  • 3SUNAR B,KOC C K. An Efficient Optimal Normal Basis Type II Multiplier[J]. IEEE Transactions on Computers, 2001,50(5) :83 - 87.
  • 4QUTTINEH N H. Computational Complexity of Finite Field Multiplication[M]. Examensarhete UtfAkorti Datatransmis- sion vid LinkAopings Tekniska HAogskola,LinkAoping,2003.
  • 5RUDINW.数学分析原理[M].英文版.北京:机械工业出版社,2004.
  • 6曾晓洋,魏仲慧,郝志航.弱对偶基下比特并行RS编码器的设计[J].光电工程,2001,28(3):65-69. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部