摘要
由于我国股票市场每日报酬时间序列的非正态性和厚尾特性,且呈现波动集群性,基于正态假设的静态模型存在很大的缺陷,而Arch类模型具有良好的处理厚尾能力,能较好地描述股价等金融变量的波动特征,因此,将Garch-M模型引入VaR方法中,通过实证分析,结果表明,Garch-M模型能显著提高预测的准确性。
For the non-normal characteristic and heavy-tailed distribution in China's stock markets, there are defects in using the model based on normal assumptions. Arch model can deal with heavy-tailed distribution and describe the fluctuations of stock price well. This paper carries out an empirical analysis with the value-at-risk (VaR) method based on Garch-M model, and the results show that the Garch-M model improves the prediction precision.
出处
《天津大学学报(社会科学版)》
2005年第5期366-368,共3页
Journal of Tianjin University:Social Sciences
基金
教育部博士学科专项科研基金资助项目(20040056041).
关键词
风险价值
异方差
GARCH-M模型
沪市
vaule-at-risk
different variance
Garch-M model
Shanghai stock market