摘要
针对神经网络易陷入局部极值的问题,用遗传算法来改进神经网络时间序列预测模型,并设计了一个组合网络,考虑了单一遗传BP神经网络预测的误差,以误差样本训练了一个校正的遗传BP神经网络,并将该组合网络时间序列预测模型应用于柴油机系统磨损趋势的预测,取得了较好的预测效果。
For the problem that BP neural network easily gets into the local extremism, the optimization of the structure and parameter of BP neural network using genetic algorithm was presented, and the combined network was developed of constructing auxiliary network to take the deviations of a single network into consideration. This combined network was used to forecast the wear trend of diesel system. The results are very satisfactory.
出处
《润滑与密封》
EI
CAS
CSCD
北大核心
2005年第5期40-42,共3页
Lubrication Engineering
基金
国家自然科学基金资助项目(50475037).
关键词
遗传算法
BP神经网络
磨损趋势预测
genetic algorithm
BP neural network
prediction of wear trend