期刊文献+

基于Chernoff上界的特征选择 被引量:2

FEATURE SELECTION USING CHERNOFF BOUND
原文传递
导出
摘要 本文提出面向多类问题的基于Chernoff上界的特征选择.推导出正态分布条件下,满足上界之和最小时的非线性矩阵方程及其迭代算法,首次获得变换矩阵的精确解.通过分析和实例可见基于Chernoff上界的特征选择是最好的特征选择. A feature selection for minimize the sum of Chernoff upper bound of error probability of every two class pair in subspace is presented. The key of Chernoff bound feature selection is to change the problem of minimizing the criterion to a problem of solving nonlinear matrix equation with a recursive algorithm. The theoretical analysis and experimental results show that the performance of proposed algorithm is superior to the performance of any previous one.
出处 《模式识别与人工智能》 EI CSCD 北大核心 1996年第1期26-30,共5页 Pattern Recognition and Artificial Intelligence
关键词 Chernoff上界 非线性矩阵方程 特征选择 Chermoff Bound, Upper Bound of Error Probability, Nonlinear Matrix Equation, Matrix Recursive Algorithm, Transformation Matrix.
  • 相关文献

参考文献3

  • 1宣国荣,计算机应用与软件,1986年,2卷,6期
  • 2宣国荣,Proc of 7th International Conference on Pattern Recognition,1984年
  • 3陶笃纯,统计图形识别导论,1978年

同被引文献40

  • 1刘伟权,王明会,钟义信.利用遗传算法实现手写体数字识别中特征维数的压缩[J].模式识别与人工智能,1996,9(1):45-51. 被引量:4
  • 2宣国荣,柴佩琪.基于巴氏距离的特征选择[J].模式识别与人工智能,1996,9(4):324-329. 被引量:16
  • 3宣国荣,Proc of 13th International Conference on Pattern Recognition,1996年
  • 4宣国荣,Proc of 2nd International Conference on Computer Society of IEEE,1987年
  • 5宣国荣,计算机应用与软件,1986年,2卷,6期,5页
  • 6宣国荣,Proc of 7th International Conference on Pattern Recognition,1984年
  • 7陶笃纯,统计图形识别导论,1978年
  • 8Wiener E., Pedersen J.O., Weigend A.S.. A neural network approach to topic spotting. In: Proceedings of the 4th Annual Symposium on Document Analysis and Information Retrieval, 1995, 317~332
  • 9Haykin Smon. Neural Networks: A Comprehensive Foundation. Second Edition. Beijing: Tsinghua University Press, 2001
  • 10Scholkopf B., Smola A., Mulle K.R.. Nonlinear component analysis as a kernel eigenvalue problem. Max-Planck-Institute, Germany: Technical Report No. 44, 1996

引证文献2

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部