期刊文献+

三通道荧光共振能量转移分析法的优化及其对活细胞内受体复合物组成的分析

OPTIMIZATION OF THREE-CUBE FRET ASSAY AND APPLICATION IN THE ANALYSIS OF SUBUNIT ASSEMBLING OF iGluR RECEPTORS IN LIVING CELLS
下载PDF
导出
摘要 目的在活细胞内建立并优化三通道FRET检测方法,使之更好地适用于膜蛋白复合物亚单位的相互作用。方法利用在HEK293细胞中转染pCFP-YFP作为阳性对照,共转pCFP和pYFP作为阴性对照,用不同的公式如FRETN、NFRET、FR及NetFRET/Df等进行FRET定量计算,并通过改变供体与受体比例来观察所测得的FRET值与FRET转移效率的关系。在HEK293细胞内转染CFP或YFP标记的不同亲离子型谷氨酸受体(iGluR)亚单位,分析它们之间的相互作用。结果FRETN、NFRET、FR及NetFRET/Df等公式均可以适用于本研究所建的三通道FRET检测系统;对于不同的公式,供体与受体蛋白分子表达比例的变化会对测量结果产生不同的影响。用所建FRET技术,发现CFP-GluRl与YFP-GluRl之间,以及CFP-NRl与YFP-NRl具有确定FRET信号,而CFP-GluRl与YFP-NRl则没有FRET发生。结论在对不同iGluR亚单位之间相互作用的研究中证明同一受体亚型中的亚单位之间可以形成同聚体,而不同受体亚型的亚单位之间则不会形成复合物。 Objective To establish and optimize three-cube FRET assay in living cells and analyze subunit assembling of iGluR receptors. Methods Taking HEK293 cells cotransfed with pECFP and pEYFP as negative control, and those transfected with pECFP-YFP as positive control, different calculation methods using fluorescence microscopy were compared. Results These calculation methods were all suitable for FRET measurement in the system, but the measurement results were affected by the ratio of Donor/Acceptor (D/A) in some degree, and different calculation methods have different optimized conditions. FRET measurement using FR value showed subunit specific assembly of iGluR subtypes. Conclusion There are different optimized conditions for these different calculation methods in the three-cube FRET measurement system, and a further evidence is provided for subunit specific assembling of iGluR subtypes from the FRET assay.
出处 《解剖学报》 CAS CSCD 北大核心 2005年第4期447-451,共5页 Acta Anatomica Sinica
基金 国家"973"计划基金(G2002CB713808) 国家自然科学基金资助项目(30470547 30270436)
关键词 荧光共振能量转移 青荧光蛋白 黄荧光蛋白 亲离子型谷氨酸受体 蛋白相互作用 Fluorescence resonance energy transfer (FRET) Cyan fluorescent protein (CFP) Yellow fluorescence protein (YFP) lonotropic glutamate receptor (iGluR) Protein interaction
  • 相关文献

参考文献15

  • 1Clegg, RM. Fluorescence resonance energy transfer and nucleic acids[J]. Methods Enzymol, 1992,9: 353-388.
  • 2Stryer L. Fluorescence energy transfer as a spectroscopic ruler [J].Annu Rev Biochem, 1978, 47:819-846.
  • 3Pollok BA, Heim R. Using GFP in FRET-based applications [ J ].Trends Cell Biol, 1999,9(2) :57-60.
  • 4Chapman ER, Alexander K, Vorherr T, et al. Fluorescence energy transfer analysis of calmodulin-peptide complexes [ J ]. Biochemistry,1992, 31(51) :12819-12825.
  • 5Verveer PJ, Squire A, Bastiaens PI. Global analysis of fluorescence lifetime imaging microscopy data [J]. Biophys J, 2000, 78(4): 21227-21237.
  • 6Karpova TS, Baumann CT, He L, et al. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser [ J ]. J Microsc, 2003,209(Pt 1): 56-70.
  • 7Gordon GW, Berry G, Liang XH, et al. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy [J]. Biophys J, 1998,74(5): 2702-2713.
  • 8Luo JH, Fu ZY, Losi G,et al. Functional expression of distinct NMDA channel subunits tagged with green fluorescent protein in hippocampal neurons in culture[J]. Neuropharmacology, 2002, 42(3): 306-318.
  • 9Youvan DC, Silva CM, Bylina E J, et al. Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nichel bands [J]. Biotechnology, 1997,3: 1-18.
  • 10Xia Z, Liu Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes[J]. Biophys J,2001, 81 (4): 2395-2402.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部