期刊文献+

Effects of Deposition Models on Deposition and Performance Deterioration in Axial Compressor Cascade 被引量:2

轴流压缩机叶栅内粒子沉积及性能下降计算中沉积模型的影响(英文)
下载PDF
导出
摘要 A new particle deposition model, namely partial deposition model, is developed in order to improve the accuracy of prediction to particle deposition. Concepts of critical velocity and critical angle are proposed and used to determine whether particles are deposited or not. The comparison of numerical results calculated by partial deposition model and existing deposition model shows that the deposition distribution obtained by partial deposition model is more reasonable. Based on the predicted deposition results, the change of total pressure loss coefficient with operating time and the distribution of pressure coefficients on blade surface after 500 hours are predicted by using partial deposition model. A new particle deposition model, namely partial deposition model, is developed in order to improve the accuracy of prediction to particle deposition. Concepts of critical velocity and critical angle are proposed and used to determine whether particles are deposited or not. The comparison of numerical results calculated by partial deposition model and existing deposition model shows that the deposition distribution obtained by partial deposition model is more reasonable. Based on the predicted deposition results, the change of total pressure loss coefficient with operating time and the distribution of pressure coefficients on blade surface after 500 hours are predicted by using partial deposition model.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期20-24,共5页 中国航空学报(英文版)
基金 NationalNaturalScienceFoundationofChina (5 0 2 760 47)
关键词 axial compressors cascade partial deposition model performance deterioration axial compressors cascade partial deposition model performance deterioration
  • 相关文献

参考文献6

  • 1Menguturk M,Sverdrup E F.Atheory for fine-particle deposition in two-dimensional boundary layer flows and application to GT[J]. ASME J of Eng for Power,1982,104(1): 69-76.
  • 2Beacher B,Tabakoff W,Hamed A.Improved particle trajectory calculations through turbomachinery affected by coal ash particles[J]. ASME J of Eng for Power,1982,104(1): 64-68.
  • 3Li X,Dunn P F,Brach R M.Experimental and numerical studies of microsphere oblique impact with planar surfaces[J].J Aerosol Sci,2000,31(5): 583-594.
  • 4Li X,Dunn P F,Brach R M.Experimental and numerical studies on the normal impact of microspheres with surfaces[J].Journal of Aerosol Science,1999,30(4): 439-449.
  • 5Soltani M,Ahmadi G. On particle adhesion and removal mechanisms in turbulent flows[J].J Adhesion Science Technology,1994,8(7): 763-785.
  • 6席光,贾会霞,王晓锋,孙金菊,邱凯.轴流压缩机叶栅内固体微粒沉积的数值研究[J].工程热物理学报,2003,24(1):55-58. 被引量:5

共引文献4

同被引文献22

  • 1Bouris D,Bergeles G.Particle-surface interactions in heat exchanger fouling[J].Journal of Fluid Engineering,1996,118(3):574-581.
  • 2Brach R,Dunn P F.A mathematical model of the impact and adhesion of microspheres[J].Aerosol Science and Technology,1992,16(1):51-64.
  • 3Soltani M,Ahmadi G.On particle adhesion and removal mechanism in turbulent flows[J].Journal of Adhesion Science and Technology,1994,8(7):763-785.
  • 4Konstandopoulos A G.Particle sticking/rebound criteria at oblique impact[J].Journal of Aerosol Science,2006,37(3):292-305.
  • 5Ai W G,Kuhlman J M.Simulation of coal ash particle deposition experiments[J].Energy and Fuels,2011,25(2):708-718.
  • 6Matos R S,Laursen T A,Vargas J V C,et al.Three-dimensional optimization of staggered finned circular and elliptic tubes in forced convection[J].International Journal of Thermal Sciences,2004,43(5):477-487.
  • 7Horvat A,Leskovar M,Mavko B.Comparison of heat transfer conditions in tube bundle cross-flow for different tube shapes[J].International Journal of Heat and Mass Transfer,2006,49(5):1027-1038.
  • 8Bouris D,Papadakis G,Bergeles G.Numerical evaluation of alternate tube bundle configurations for particle deposition rate reduction in heat exchanger tube bundles[J].International Journal of Heat and Fluid Flow,2001,22(1):525-536.
  • 9Bouris D,Konstantinidis E,Balabani S,et al.Design of a novel,intensified heat exchanger for reduced fouling rates[J],International Journal of Heat and Mass Transfer,2005,48(18):3817-3832.
  • 10Abd-Elhady M S,Rindt C C M,Wijers J Q et al.Minimum gas speed in heat exchangers to avoid particulate fouling[J].International Journal of Heat and Mass Transfer,2004,47(17):3943-3955.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部