期刊文献+

交通流可预测性分析 被引量:2

Analysis on Predictability of Traffic Flow
下载PDF
导出
摘要 交通流的可预测性是进行短期交通流预测的基础。本文首先判别了短期交通流的混沌特性,求解出表征交通流“蝴蝶效应”的最大Lyapunov特征指数,在此基础上按照交通流动力系统运动轨道的演化特点求解出最大可预测时间,但是交通流系统是开放的复杂巨系统,最大可预测时间涉及到的影响因素很多,论文分析了交通流历史数据样本的大小和数据中含有的噪声对交通流可预测性的影响和随着预测步长的增加,交通流可预测性的衰减特征,得出交通流可预测性是一个综合指标,不能仅仅以最大Lyapunov指数的倒数来确定,应综合分析考虑。论文得到的结果在实际的交通流数据中得到了验证。 The predictability of traffic flow is the basis of short-term traffic flow forecasting. Firstly, the paper identified the chaotic character of short-term traffic flow. And then the largest Lyapunov exponent which reflects the ‘butterfly effect’ is solved. On this basis, the largest forecasting time scale could be found according to the evolvement of the traffic flow dynamic system. But the traffic flow system is an open, complex and huge system and there are a lot of factors that affect the predictability of traffic flow. The paper analyzes the effect of historic data scale and the noise in the original traffic data to the predictability of traffic flow. Also the paper studies the attenuation character of the predictability with the increase of the forecasting step. At last the paper concludes that the predictability of traffic flow is an integrated parameter. It could not be determined only by the reciprocal of largest lyapunov exponents. We should analyze it synthetically. The conclusion is validated in the real traffic flow data.
出处 《ITS通讯》 2005年第2期11-14,共4页
关键词 混沌 交通流可预测性 最大LYAPUNOV指数 短期交通流预测 交通流预测 可预测性 短期交通流 预测时间 动力系统 论文分析 chaos, the predictability of traffic flow, largest lyapunov exponents, short-term traffic flow forecasting
  • 相关文献

同被引文献23

  • 1裴玉龙,李洪萍.快速路交通流时间序列分形维数研究[J].公路交通科技,2006,23(2):115-119. 被引量:15
  • 2李松,贺国光.高速公路交通流混沌特性研究[J].公路交通科技,2006,23(10):91-94. 被引量:6
  • 3卢宇,贺国光.一种新的交通流混沌实时判定方法[J].系统工程理论方法应用,2006,15(5):445-450. 被引量:5
  • 4Shang P J, Li X W, Santi K. Nonlinear analysis of traffic tme series at different temporal scales [J]. Physics Letters A,2006,357 : 314- 318.
  • 5Shang P J, Li X W, Santi K. Chaotic analysis of uraffic time series[J].Chaos,Solitons and Fractals,2005:121-128.
  • 6Wang J, et al. Analysis on predictability of traffic flow[J].ITS Communication, 2005,7 (2):11 - 14.
  • 7Shang P J, Lv Y B, Santi K. Detecting long-range correlations of traffic time series with multifractal detrended fluctuation analysis [J]. Chaos, Solitons and Fractals,2008,36(1) :82-90.
  • 8Sanchez Granero M A, Trinidad Segovia J E, Garcia Perez J. Some comments on Hurst exponent and the long memory processes on capital markets [J]. Physica A: Statistical Mechanics and Its Applications, 2008,387 (22) : 5543- 5551.
  • 9HUANG Zhong-xiang, LI Zuo-min. The fractal dimension and fractal interval for freeway traffic flow [ C ] //2000 IEEE Intelligent Transportation Systems Conference Proceedings. Dearbom, MI, USA: [ s. n. ] , 2000: 1-d .
  • 10刘峰涛.城市与高速公路交通流复杂度的测度及比较[J].系统工程,2007,25(7):78-82. 被引量:3

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部