摘要
对于一个包含关系的关联矩阵,文献[1]构造了一个拟阵,并由关联矩阵定义了诣零矩阵(nil-矩阵),而且讨论了它的相关性质,进而提出具有N-特征的矩阵(即nil-矩阵)能否构造一个拟阵.本文在文献[2~5]的基础上,通过反例证明nil-矩阵不一定能构造拟阵,又给出了一个较强的能构造拟阵的nil-矩阵的条件,即对于关联矩阵A,若任意秩为的子矩阵皆为nil-矩阵,则(D,N(A))是一个拟阵,且其秩为,而且这个矩阵A的所有nil-矩阵都是拟阵(D,N(A))的独立集.
For a relation with the incidence matrix, the paper [ 1 ] has raised a question,i, e. can we construct a matroid by the matrix with N-property (nil-matrix)? Based on the answer of the question by a reverse example, it isn' t fixed. In the same time, it gives a stronger condition of nil-matrix that can construct a matroid as follows. For incidence matrices A, if they are nil-matrix in which the arbitrary submatrices orders are r^-, (D,N,(A)) they are matoid. If their order is ?, all of the A's nil-matrices is the gathering independently of the matoid (D,N,(A) ).
出处
《重庆师范大学学报(自然科学版)》
CAS
2005年第3期58-59,86,共3页
Journal of Chongqing Normal University:Natural Science