期刊文献+

诣零矩阵和拟阵 被引量:3

Nil-Matrices and Matroid
下载PDF
导出
摘要 对于一个包含关系的关联矩阵,文献[1]构造了一个拟阵,并由关联矩阵定义了诣零矩阵(nil-矩阵),而且讨论了它的相关性质,进而提出具有N-特征的矩阵(即nil-矩阵)能否构造一个拟阵.本文在文献[2~5]的基础上,通过反例证明nil-矩阵不一定能构造拟阵,又给出了一个较强的能构造拟阵的nil-矩阵的条件,即对于关联矩阵A,若任意秩为的子矩阵皆为nil-矩阵,则(D,N(A))是一个拟阵,且其秩为,而且这个矩阵A的所有nil-矩阵都是拟阵(D,N(A))的独立集. For a relation with the incidence matrix, the paper [ 1 ] has raised a question,i, e. can we construct a matroid by the matrix with N-property (nil-matrix)? Based on the answer of the question by a reverse example, it isn' t fixed. In the same time, it gives a stronger condition of nil-matrix that can construct a matroid as follows. For incidence matrices A, if they are nil-matrix in which the arbitrary submatrices orders are r^-, (D,N,(A)) they are matoid. If their order is ?, all of the A's nil-matrices is the gathering independently of the matoid (D,N,(A) ).
作者 汪定国
出处 《重庆师范大学学报(自然科学版)》 CAS 2005年第3期58-59,86,共3页 Journal of Chongqing Normal University:Natural Science
关键词 关联矩阵 nil-矩阵 拟阵 incidence matrices nil-matrix matoid
  • 相关文献

参考文献5

  • 1ALEKSEYEVSKAYA I V, GELFAND I M. Incidence Matrices, Geometrical Base, Combinatorial Prebase and Matroids[J].Discrete Mathematics,1998,180:23-44.
  • 2GWIHEN E,MICHEL L V.External and Internal Elements of A Matroid Basis [J].Discrete Mathematics,1998,179:111-119.
  • 3WENDY C.An Exchange Property of Matoid (Note) [J].Discrete Mathematics,1995,146:299-302.
  • 4JOSEPH E B.On Basis-exchange Properties for Matroids (Note) [J].Discrete Mathematics,1998,187:265-268.
  • 5汪定国.关联矩阵与拟阵[J].重庆师范学院学报(自然科学版),2003,20(1):13-16. 被引量:2

二级参考文献1

  • 1STEPHEN B.Maurer,Matroid Basis Graphs Ⅰ[J].Journal of Combinatorial Theory( B),1973,(14):216-240.

共引文献1

同被引文献23

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部