期刊文献+

晶体位错尺寸效应的多尺度分析 被引量:1

Multiscale Analysis of Size Effect in Crystalline Solid Dislocation
下载PDF
导出
摘要 本文采用准连续介质多尺度方法,分析了面心立方(fcc)晶体铝阶梯孪晶界在不同尺寸情况下(试件尺寸长高比从1∶1到8∶1)受剪切作用的晶界变形。了解在不同尺寸下,晶界结构位错的成核过程,得到了大试件比值与小试件比值下作用力与应变的关系曲线及不同试件尺寸下应变能的变化曲线。其中随着试件比值的增加,作用力在应变比较小的时候变化情况相似,但当应变达到3%以后,呈现出明显的不同;应变能随试件长高比的增大而减小,各个试件在各自不同的加载阶段,应变能变化趋势同作用力变化趋势相一致。本计算揭示了不同尺寸下阶梯孪晶界在剪切作用下的微观机理,证实其尺寸效应性质。 The quasi-continuum method is used to analyze the action of two fcc AI crystals with a stepped twin boundary in a specimen under uniform shear strain. The length height ratio of the specimen is chosen from 1 : 1 to 8 : 1 to find the size effect. The progress of the nucleation of partial dislocations was examined, and the schematic variations of the applied force and the strain energy with shear strain in the specimens with different aspect ratio were obtained. The results show that the applied forces of all four specimens have a similar variety as the strain of specimens is small, but the forces are applied differently after the strain arrived at 3%. The strain energy will decrease with the increase of specimen's aspect ratio, and the variations of strain energy consist with the variations of applied forces at different load step. The calculation elucidate the plausible microscopic mechanisms for the nucleation of dislocations under shear and the size effect is in evidence.
出处 《力学季刊》 CSCD 北大核心 2005年第3期366-369,共4页 Chinese Quarterly of Mechanics
基金 国家自然科学基金(10372024)
关键词 准连续介质方法 位错 尺寸效应 多尺度 quasi-continuum method dislocation size effect multiscale
  • 相关文献

参考文献6

  • 1Tadmor E B. Ortiz M, Phillips R. Quasi-continuum analysis of defects in solids[J]. Phil Mag A, 1996,73:1529 - 1563.
  • 2Daw M S, Baskes M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals [J]. Phys Rey B, 1984, 29:6443- 6453.
  • 3Norskov J K, Lang N D. Effective-medium theory of chemical binding: application to chemisorption[J]. Phys Rev B, 1980,21:2131 -2136.
  • 4Shenoy V, Miller R, Tadmor E, et al. An adaptive finite element approach to atomic-scale mechanics: the quasi-continuum method [J].Journal of the Mechanics and Physics of Solids, 1999,47:611 - 642.
  • 5Miller R, Tadmor E B, Phillips R, et al. Quasi-continuum simulation of fracture at the atomic scale[J]. Modeling Simul Mater Sci Eng,1998, 6:607- 638.
  • 6Miller R, Ortiz M, Phillips R, et al. Quasi-continuum models of fracture and plasticity[J]. Eng Fracture Mech, 1998, 61:427- 444.

同被引文献36

  • 1Oliver W C, Pharr G M. J Mater Res, 1992; 7:1564.
  • 2Li X D, Bhushan B. Mater Charact, 2002; 48:11.
  • 3Bamber M J, Cooke K E, Mann A B, Derby B. Thin Solid Films, 2001; 399:299.
  • 4Bhushan B, Koinkar V N. Appl Phys Lett, 1994; 64:1653.
  • 5Chen J, Bull S J. Thin Solid Films, 2006; 494:1.
  • 6Sangwal K, Gorostiza P, Sanz F. Surf Sci, 2000; 446:314.
  • 7Zimmerman J A, Kelchner C L, Klein P A, Hamilton J C, Foiles S M. Phys Rev Lett, 2001; 87:165507.
  • 8Shankar R M. Appl Phys Lett, 2007; 90:171924.
  • 9Kiely J D, Hwang R Q, Houston J E. Phys Rev Lett, 1998; 81:4424.
  • 10Yang B, Vehoff H. Acta Mater, 2007; 55:849.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部