期刊文献+

基于约束的关联挖掘在教学信息中的应用研究

the Application and Research of Constraint-Based Association Mining in Teaching Information Databases
下载PDF
导出
摘要 进行关联规则挖掘时会得到大量的规则,而真正关注的规则往往淹没其中。本文通过对基于约束的关联规则挖掘方法的分析和研究,结合实际学生选课信息,提出了适合的约束条件来剪除无兴趣规则,并挖掘出部分课程间的有趣规则,为今后的教学课程设置提供了参考。 There are too many rules to discover the interesting rules concerned really when mining association rules. This paper analyzes and researches into methods of mining association rules based on constraint conditions, then applies them in analysis of course-selecting information, proposes some proper constraints to prune the uninteresting rules and discovers the useful rules about some courses, which can provide consults for setting courses in the future.
作者 李湘军 黄燕
出处 《科技广场》 2005年第6期34-38,共5页 Science Mosaic
关键词 数据挖掘 关联规则 兴趣度 Data Mining Association Rules Interestingness
  • 相关文献

参考文献2

二级参考文献12

  • 11,Agrawal R, Mannila H, Srikant R et al. Fast discovery of association rules. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California: AAAI/MIT Press, 1996. 307-328
  • 22,Brin S, Motwani R, Ullman J D et al. Dynamic itemset counting and implication rules for market basket data. In: Proc the ACM SIGMOD International Conference on Management of Data, Tucson, Arizon, 1997. 255-264
  • 33,Fayyad U M, Piatesky-shapiro G, Smyth P P. From data mining to knowledge discovery: an overview. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. California:AAAI Press, 1996. 1-36
  • 44,Piatesket-Shapiro G. Discovery, analysis, and presentation of strong rules. In: Piatesky-Shapiro G, Frawley W J eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California:AAAI/MIT Press, 1991. 229-238
  • 55,Silberschatz A, Stonebraker M, Ullman J. What makes patterns interesting in knowledge discovery sysstems. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6):970-974
  • 66,Symth P, Goodman R M. An information theoretic approach to rule induction from databases. IEEE Trans on Knowledge and Data Engineering, 1992, 4(4):301-316
  • 77,Toivonen H, Klemettinen M, Ronkainen P et al. Pruning and grouping discovered association rules. In: Mlnet Workshop on Statistics, Machine Learning, and Discovery in Database, Gete, Greece, 1995. 47-52
  • 8S Brin,R Molwanli,J Ullman Dynamic.Itemset Counting and Implication Rules for Market Basket Data[C].In proceedings of the International Conference on management Of Data.1997.255-264.
  • 9R Srikant,R Agrawal.Mining generalized association rules[C].In proceedings of the 21st International conference on Very Large Database.Zurich Switzerland 1995.407-409.
  • 10J W Han,Y Fu.Discovery of the multiple-levele association rules from large database[C].In proceedings of the 21st International conference on Very Large Database.Zurich Switzerland 1995.407 -409.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部