期刊文献+

LiFePO_4正极材料的合成与电化学性能研究 被引量:1

Study on the synthesis of LiFePO_4 cathode and its electrochemical performance
下载PDF
导出
摘要 采用固相反应合成了LiFePO4正极材料,研究了抑制Fe2+氧化以及产物粒径长大对产物充放电性能的影响。制备样品分别用XRD、FT-IR、SEM进行表征。在添加20%乙炔黑、纯氮气氛下、600℃烧结24h可制得单一物相的LiFePO4粉末。在2.5~4.3V(vs.Li)范围内,测量了不同扫描速度(0.06、0.1、0.2mV/s)对循环伏安的影响。结果表明制备材料有良好的Li+脱嵌性能、LiFePO4中的Fe2+/Fe3+氧化还原反应是一个准可逆体系。在2.7~4.0V(vs.Li)范围内,以15mA/g电流密度放电,首次放电比容量可达到147mAh/g,且电压平台好,放电反应表现出典型的两相行为。 LiFePO4 powders were synthesized following solid reaction. The influence of avoiding oxidation of Fe^2+ and undesirable particle growth on the charge/discharge performance of the as-prepared samples was investigated. The materials were characterized by X-ray powder diffraction, FT-IR spectroscopy, scanning electron microscopy. A single phase of LiFePO4 powder can be synthesized by sintering precursor(adding 20% C) in flowing pure nitrogen at 600℃ for 24 h, The effect of the scanning rate on the cycle voltammograms was measured at 0.06, 0.1, 0.2 mV/s between 2.5 and 4.3 V(vs. Li). The results meant that the prepared material has good reversibility for Lit extration/insertion and that the Fe^2+/Fe^3+ redox reaction in LiFePO4 is a quasi-reversible system. A specific capacity of 147 mAh/g was delivered when first discharging at room temperature under 15 mA/g between 2.7 and 4.0 V (vs. Li). The shapes of the discharge curves, which had flat potential plateau, suggested that the discharge reaction proceeds as a typical two-phase reaction.
出处 《电源技术》 CAS CSCD 北大核心 2005年第9期578-581,共4页 Chinese Journal of Power Sources
关键词 LIFEPO4 正极材料 合成 电化学性能 lithium iron phosphate cathodic material synthesis electrochemical performance
  • 相关文献

参考文献1

二级参考文献1

共引文献25

同被引文献15

  • 1刘恒,孙红刚,周大利,张萍,尹光福.改进的固相法制备磷酸铁锂电池材料[J].四川大学学报(工程科学版),2004,36(4):74-77. 被引量:36
  • 2麻明友.锂离子电池正极材料LiFePO_4C的制备与表征[J].吉首大学学报(自然科学版),2004,25(3):64-67. 被引量:2
  • 3曲涛,田彦文,钟参云,丁扬,翟玉春.掺碳制备锂离子电池正极材料LiFePO_4[J].分子科学学报,2005,21(4):37-41. 被引量:4
  • 4Padhi A K, Nanjundaswamy K S, Goodenough J B, Phosphoolivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997, 144(4):A1188.
  • 5Park K S, Son J T, Chung H T, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating[J].Electrochemistry Communications, 2003,5(10):A839-842.
  • 6Prosini P P, Zane D, Pasquali M. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Elec trochemica Acta, 2001, 46(23); A3517-3523.
  • 7Yang Shoufeng, Zavalij P Y , Whittingham M S. Hydrothermal synthesis of lithium iron phosphate cathodes[J].Electro chemistry Communication, 2001, 3(9) : A505 -508.
  • 8Takahashi M, Tobishima S, Takei K, Sakurai Y, Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J], Solid State lonics, 2002, 148(3-4): 283-289.
  • 9Whittingham M S, Lithium batteries and cathode Materials[J], Chem Rev, 2004, 104(10) : 4271-4301.
  • 10Prosini P P, Lisi M, Zane D, Determination of the chemical diffusion coefficient of lithium in LiFePO4 [J].Solid State Ion ics, 2002, 148(12); 45- 51

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部