期刊文献+

GPS可降水量资料应用于MM5模式的变分同化试验 被引量:25

VARIATIONAL ASSIMILATION OF GPS PRECIPITABLE WATER INTO MM5 MESOSCALE MODEL
下载PDF
导出
摘要 利用建立在长江三角洲地区GPS观测网中13个站点的资料对2002年6月27~28日影响长江三角洲地区的降水过程进行了MM5背景误差调节和可降水量资料的三维变分同化试验.试验结果表明:背景误差对三维变分同化的效果起着关键作用,模式变量(u,v,T,p和q)误差的水平尺度与NMC方法的平均时间长度有直接的关系.利用NMC方法重新构建的背景误差更接近实际的背景误差.三维变分技术能有效地同化GPS可降水量资料.GPS可降水量资料的同化使用不仅能调整模式初始湿度场,而且也能相应地调整模式初始气压场、温度场和风场.GPS可降水量资料的同化有利于减小模式初始场对可降水量的分析误差,并且有利于减小模式积分初期(3~6 h)可降水量的预报误差.与没有进行GPS可降水量同化相比,通过GPS可降水量资料的三维变分同化,使MM5模式6 h和24 h累计降水能力得到提高,改善了MM5模式降水预报性能.总体上,GPS可降水量资料的变分同化有利于模式降水预报能力的提高. The GPS precipitable water (PW) from 13 GPS sites in the Yangtze delta is explored to investigate the tune of background errors and the three dimensional variational assimilation of MM5 on rainfall event occurred from June 27 to 28,2002. The results show: Background errors (BE) play a key role in the three dimensional variational assimilation of MM5. The horizontal scalelength of model variables ( u, v, T, p and q) is closely related to the average time of NMC technique. The scalelength of model variables is different for each other, which value is associated with the vertical height of the variable on the MM5 level. The BE calculated by NMC technique reach the true BE more closely than that provided by MM5-3DVAR system. GPS PW data can be assimulated into MM5 by using 3DVAR technique. After GPS PW data assimulation, the initial humidity field can be reanalyzed while the initial temperature, pressure and wind fields also being modified. 3DVAR of GPS PW is benefitial to reduce analysis bias of PW in initial fields which can result in restraining PW prediction bias during the earlier period (3 - 6 h) of model integration so as to improve PW prediction. The PW prediction improvement is related to the GPS receiver location in the area covered by GPS networks. By comparing the results with no GPS IPW assimilation, we find that GPS PW assimilation can increase the accuracy of 6 h and 24 h accumulated precipitation prediction so as to improve the precipitation prediction ability of MM5. On the whole, GPS PW data assimilation will improve the precipitation prediction of MM5. However, there are several difficulties that will impact the GPS assimilation, which are how to get the true background errors and GPS PW errors at real time. It will be further researches to develop a new technique to calculate more reasonable background errors and GPS PW errors.
作者 袁招洪
机构地区 上海市气象局
出处 《气象学报》 CAS CSCD 北大核心 2005年第4期391-404,共14页 Acta Meteorologica Sinica
基金 中国科学院知识创新工程重要方向项目(KJCX2-SW-T1-3)
  • 相关文献

参考文献13

  • 1Bevis M, Businger S, Herring T A,et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res, 1992, 97: 15787-15801.
  • 2Bevis M, Businger S, Chiswell S R, et al. GPS meteorology: Mapping zenith wet delays onto precipitable water. J Appl Meteor,1994, 33: 379-386.
  • 3熊永清.利用地面GPS技术绝对测定湿大气含量的可能性[J].气象学报,1999,57(5):632-639. 被引量:3
  • 4Kuo Y-H, Guo Y-R, Westwater E R. Assimilation of precipitable water vapor into mesoscale numerical model. Mon Wea Rev, 1993, 121: 1215-1238.
  • 5Kuo Y-H, Zou X, Guo Y-R. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Mon Wea Rev, 1996, 124: 122-147.
  • 6Guo Y-R, Kuo Y-H, Dudhia J, et al. Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong case. Mon Wea Rev, 2000, 128: 619-642.
  • 7Falvey M, Bevan J. The impact of GPS precipitable water assimilation on mesoscale model retrievals of orographic rainfall during SALPEX'96. Mon Wea Rev, 2002, 130: 2874-2888.
  • 8Smith T, Benjamin S G, Gulman S I. Impact of GPS water vapor data on RUC severe weather forecasts. Preprints, 21st Conf. on Severe Local Storms, San Antonio. TX, Amer Meteor Soc, 2002. J43-J46.
  • 9Tomassini M, Gendt G, Dick G M, et al. Monitoring of integrated water vapor from ground-based GPS observations and their assimilation in a limited-area NWP model. Phy Chem Earth(A), 2002, 27: 341-346.
  • 10袁招洪,丁金才,陈敏.GPS观测资料应用于中尺度数值预报模式的初步研究[J].气象学报,2004,62(2):200-212. 被引量:25

二级参考文献19

  • 1葛茂荣,刘经南.GPS定位中对流层折射估计研究[J].测绘学报,1996,25(4):285-291. 被引量:72
  • 2[1]Park S, Droegemeier K. Sensitivity of 3 - D convective storm evolution to water vapor and implications for variational data assimilation.Preprints, 11th Conf. On Numerical Weather Prediction, Norfolk, VA, Amer Meteor Soc, 1996, 137~139
  • 3[2]Crook N. Sensitivity of Moisture convective forced by boundary layer processes to low-level thermodynamic fields. Mon Wea Rev, 1996, 124:1767~ 1785
  • 4[4]Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res, 1992, 97: 15787~15801
  • 5[5]Cucurull L, Navascues B, Ruffini G,et al.. The use of GPS to validate NWP systems: The HIRLAM model. J Atmos Oceanic Tech, 2000, 17:773 ~ 787
  • 6[6]Kopken C. Validation of integrated water vapour from numerical models using ground based GPS, SSM/I, and water vapor radiometer measurements. J Appl Meteor, 2001, 40:1105~1117
  • 7[8]Rocken C, Van Hove T, Johnson J, et al. GPS storm-GPS sensing of atmospheric water vapor for meteorology. J Atmos Oceanic Tech, 1995,12: 468 ~ 478
  • 8[9]Kuo Y-H, Guo Y-R, Westwater E R. Assimilation of precipitable water vapor into mesoscale numerical model. Mon Wea Rev, 1993, 121: 1215~ 1238
  • 9[10]Kuo Y-H, Zou X, Guo Y-R. Variational assimilation of precipitable water using a nonhydrostatic mesoscale adjoint model. Mon Wea Rev, 1996,124:122~147
  • 10[11]Guo Y-R, Kuo Y-H, Dudhia J, et al. Four-demensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case. Mon Wea Rev, 2000, 128:619~643

共引文献26

同被引文献300

引证文献25

二级引证文献250

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部