期刊文献+

一种多光谱图像纹理特征提取及比较方法

A New Method for Texture Feature Retrieval and Comparison of Multi-spectral Images
下载PDF
导出
摘要 该文提出一种基于最小二乘及区域分割的多光谱图像纹理特征提取与比较的方法。通过最小二乘法得到系数矩阵来描述多光谱图像的纹理特征,利用区域分割技术将不同纹理特征的图像区分开,并将相似纹理的图像合并为一类。提取区域的统计特性得到纹理特征提取的结果,并采用四条标准来比较两幅多光谱图像特征的差异程度,最后进行算法仿真,取得了较好的效果。 A new method based on least squares and region segmentation is proposed to retrieve and compare the texture features of multi-spectral images in this paper.Vectors of coefficients achieved by least squares method can express the texture of multi-spectral images,Then blocks of different texture are divided separately and blocks of the same texture are merged into the same class using the region segmentation method.The statistical features of each region are retrieved to make up of the texture features of the multi-spectral images.Finally,four rules are proposed to show the difference between two multi-spectral images,The result of simulation shows that it is a practical and effective method,
出处 《计算机工程与应用》 CSCD 北大核心 2005年第26期30-33,113,共5页 Computer Engineering and Applications
基金 国家自然科学基金项目(编号:60375008) 国家科技攻关计划重点项目(编号:2004BA908B07) 航空科学基金(编号:02D57003) 高校博士点基金(编号:20020248029) 航天支撑技术基金资助
关键词 纹理 多光谱图像 最小二乘法 区域分割 texture, multi-spectral images, least squares method, region segmentation
  • 相关文献

参考文献11

  • 1Hauta-Kasari M,Parkkinen J,Jaaskelainen T et al.Generalized CoOccurrence Matrix for Multi-spectral Texture Analysis[C].In:Proceedings of the 13th International Conference,Pattern Recognition,1996;2 (3) :785-789.
  • 2Haralick R M,K Shanmugam,I Dinstein.Textual Features for Image Classification[J].IEEE Trans.on SMC,1985;SMC-3.
  • 3Ojala T ,Pietkainer M, Harwood D,A Comparative Study of Texture Measures with Classification based on Feature Distributiort[J].Pattern Recognition, 1996;29( 1 ) :51-59.
  • 4Fanelli A,Leo A,Ferri.Remote Sensing Images Data Fusion:A Wavelet Transform Approach for Urban Analysis[C].In:IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 2002 : 112-116.
  • 5Deok J park.Multi-resolution edge detection techniques[J].Pattern Recognition, 1995 ;28(2) :211-229.
  • 6Haralick R M ,Shanmugam K ,Dinstein I.Textual Features for Image Classification[J].IEEE Trans S M C,1973;SMC-3.
  • 7Hewer G A,Kenney C,Manjunath B S.Variational Image Segmentation Using Boundary Functions[J].IEEE Trans on Image Processing, 1998;7(9) :345-352.
  • 8Chen H,Fu P.Straight-line edge detection and rebuilding of image[J]. Chinese Journal of Scientific Instrument, 1991 ; 12( 1 ) : 107-112.
  • 9Canny J.A Computational Approach to Edge Detection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1986;PAMI-8(6): 679-714.
  • 10Jia Li,Wang J Z,Wiederhold G.Classification of Textured and Nontextured Images using Region Segmentation[C].In:Proceedings of 2000 International Conference on Image Processing, Vol 3,2000:754-757.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部