期刊文献+

The Cauchy Problem for the Fifth Order Shallow Water Equation 被引量:3

The Cauchy Problem for the Fifth Order Shallow Water Equation
原文传递
导出
摘要 The local well-posedness of the Cauchy problem for the fifth order shallow water equation δtu+αδx^5u+βδx^3u+rδxu+μuδru=0,x,t∈R, is established for low regularity data in Sobolev spaces H^s(s≥-3/8) by the Fourier restriction norm method. Moreover, the global well-posedness for L^2 data follows from the local well-posedness and the conserved quantity. For data in H^s(s〉0), the global well-posedness is also proved, where the main idea is to use the generalized bilinear estimates associated with the Fourier restriction norm method to prove that the existence time of the solution only depends on the L^2 norm of initial data. The local well-posedness of the Cauchy problem for the fifth order shallow water equation δtu+αδx^5u+βδx^3u+rδxu+μuδru=0,x,t∈R, is established for low regularity data in Sobolev spaces H^s(s≥-3/8) by the Fourier restriction norm method. Moreover, the global well-posedness for L^2 data follows from the local well-posedness and the conserved quantity. For data in H^s(s〉0), the global well-posedness is also proved, where the main idea is to use the generalized bilinear estimates associated with the Fourier restriction norm method to prove that the existence time of the solution only depends on the L^2 norm of initial data.
作者 Zhao-hui Huo
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2005年第3期441-454,共14页 应用数学学报(英文版)
关键词 Shallow water equation the Fourier restriction norm [k Z] multiplier bilinear estimates Shallow water equation, the Fourier restriction norm, [k, Z] multiplier, bilinear estimates
  • 相关文献

参考文献12

  • 1Bourgain, J. Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schr6dinger equation, part Ⅱ: the KdV equation. Geom. Funct. Anal., 2:107-156,209-262 (1993).
  • 2Bona, J.L, Smith, R.S. A model for the two-ways propagation of water waves in a channel. Math. Proc.Cambridge Philos. Soc., 79:167-182 (1976).
  • 3Kenig, C[E., Ponce, G., Vega, L. The Cauchy problem for the Korteweg-de vries equation in sobolev spaces of negative indices. Duke hlath. J., 71:1-21 (1993).
  • 4Kenig, C.E., Ponce, G., Vega, L. Oscillatory integrals and regularity of dispersive equations. Indiana Univ.Math. J., 40:33-69 (1991).
  • 5Kenig, C.E., Ponce, G,, Vega, L. Higher order nonlinear dispersive equations. Proceedings A,M,S., 122:157-166 (1994).
  • 6Kenig, CIE., Ponce, G., Vega, L. A bilinear estimate with applications to the KdV equation, J, Amer.Math. Soc., 9:573-603 (1996).
  • 7Kichenassamy, S., Olver, P.J. Existence and nonexistence of solitary wave solutions to higher-order modele volution equations. SIAM J. Math. Anal., 23:1141-1166 (1992).
  • 8Molinet, L. Sault, J.C., Tzvetkov, N, Ill-posedness issues for the Benjamin-Ono and related equations,SIAM J. Math, Anal., 33:982- 988 (2001).
  • 9Newell, A.C. Solitons in Mathematics and Physics. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 48, Society for industrial and Applied Mathematics, Philadelphia, PA, 1985.
  • 10Ponce G.Lax pairs and higher order models for water waves. J. Diff. Eq., 102:360-381 (1993).

同被引文献6

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部