摘要
用前向网络和扩展的delta-bar-delta算法对主族特征价阳离子的离子交换分配系数(K_d)进行了预测,对网络结构、学习次数进行了优化并研究了学习集的大小.1nK_d的均方根偏差(RMS)小于7%.
The ion exchange distribution coefficients of cat ions having characteristie valence in main groups were predicted by using extented delta-bar-delta neural networks, The effect of structure of network, the learning Epochs and the size of learning set on predicted results was investigated.The suitable conditions are:input nodes 4; output node: 1; the learning epochs: 3 000; the size of learning set:112. The RMS(root-mean-square error) is smaller than 7%under the suitable conditios.
出处
《高等学校化学学报》
SCIE
EI
CAS
CSCD
北大核心
1996年第5期698-701,共4页
Chemical Journal of Chinese Universities
关键词
离子交换
分配系数
神经网络
Cation exchange
Distribution coefficient
Artificial neural networks