期刊文献+

基于关联信息的阵列气体传感器故障诊断研究

Array Chemical Gas Sensor Failure Diagnosis and Location Based on Information Association
下载PDF
导出
摘要 人工嗅觉系统的实际工作环境一般较为恶劣,因此对气体传感器进行故障诊断,提高系统可靠性是必须的.由于气体传感器的交叉敏特性,使得传感器阵列的输出信息具有冗余性,本文提出了利用气体传感器阵列的冗余关联特性来进行气体传感器故障检测与诊断的新方法.在该方法中,人工神经网络被用于气体传感器故障关联信息的检测与定位,实际使用表明该方法完全能够实现阵列气体传感器故障的在线诊断与定位,并可适用于其它类似的系统. It is necessary to enhance the reliability of artificial olfactory system in bad working environment. Crossed sensitivity of array chemical gas sensors, results in redundancy the output information. We hence used the characteristics of redundancy to solve the problems of gas sensor failure diagnosis, where the artificial neural network is be used. The practice uses show the novel method can meet the needs of the on-line diagnosis and location of array chemical sensors.
出处 《测试技术学报》 EI 2005年第3期331-334,共4页 Journal of Test and Measurement Technology
基金 广东省自然科学基金资助项目(32030)
关键词 人工嗅觉系统 故障诊断 定位 关联信息 神经网络 artificial olfactory system failure detecting location redundancy information neural networks
  • 相关文献

参考文献4

  • 1虞和济 韩庆大 原培新.振动诊断的工程应用[M].北京:冶金工业出版社,1992..
  • 2Venkatesan R, Balamurugan B. A real-time hardware fault detector using an artificial neural network for distance protection[J]. IEEE Transactions on Power Delivery, 2001, 16(1): 75-82.
  • 3Lee C H, Teng C C. Identification and control of dynamic systems using recurrent fuzzy neural networks[J]. IEEE Transactions on Fuzzy Systems, 2000, 8(4): 349-366.
  • 4Poznyak A S. Ljung L. On-line identification and adaptive trajectory tracking for nonlinear stochastic continuous time systems using differential neural networks[J]. Automatica, 2001, 37(8): 1257-1268.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部