期刊文献+

CmⅠ奇宇称光谱能级的模式识别研究 被引量:2

Study on the Curium Ⅰ Odd-Parity Energy Levels Using Pattern Recognition Techniques
下载PDF
导出
摘要 应用新的模式识别方法PCA-BPN(PrincipalComponentAnalysis-BackPropagationNetwork)指认CmⅠ奇宇称未知能级,支持了前人应用传统的KNN(KNearestNeighbors)等模式识别方法及对传神经网络方法(CounterPropagationNetwork,CPN)对大部分谱线的指认,进一步确认了这些组态的归属;鉴别了KNN等与CPN不同的预报结果,纠正CPN的某些错误分类。 A new pattern recognition technique PCA-BPN(principal component analysisback propagation network) has been used to assign the unknown electronic configurations of odd-parity energy levels of the first spectrum of curiurn (Cm I ). The obtained results show that (1) most previous predictions given by KNN(K nearest neighbours) and CPN(counter propagation network) are further codemed;(2) several energy levels, which could not be clearly assigned by KNN etc., are predicted to be in good agreement with the assignments of the CPN;(3) two energy levels which were wrongly predicted by the CPN are now corrected using the PCA-BPN and the new assignxnents are supported by the traditional pattern recognition tedrique, PCA-NLM(principal component analysisnonlinear mapping).
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 1996年第5期400-405,共6页 Acta Physico-Chimica Sinica
基金 国家自然科学基金
关键词 CMI 奇宇称光谱 能级分类 模式识别 非线性映照 Cm Ⅰ odd parity spectrum, Classification of energy levels, Pattern recognition, PCA-BP neural network, Nonlinear mapping
  • 相关文献

参考文献3

  • 1陈念贻,J Analytica Chimica Acta,1988年,210卷,175页
  • 2刘洪霖,Analytical Lett,1994年,27卷,2195页
  • 3刘洪霖,J Chemometrics,1994年,8卷,439页

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部