期刊文献+

总人口规模变化的年龄结构MSEIR流行病模型的再生数 被引量:2

The Reproductive Number of Age-Structured MSEIR Epidemic Model with Varying Total Population Size
原文传递
导出
摘要 在总人口规模变化和疾病影响死亡率的假设下,讨论了带二次感染和接种疫苗的年龄结构MSEIR流行病模型.首先给出再生数R(ψ,λ)(这里ψ(a)是接种疫苗率,λ是总人口的增长指数)的显式表达式.其次,证明了当R(ψ,λ)<1时,系统的无病平衡态是稳定的;当R(ψ,λ)>1时,无病平衡态是不稳定的. We discuss an age-structured MSEIR epidemic model with the loss of immunity and an age-dependent vaccination rate φ(a) under the assumption of varying total population size and death-rate dependent of some diseases. First, we obtain an explicit formula for the reproductive number R(φ,λ) where φ(a) is the vaccination rate and λ is the growth exponent of total population. Next, we prove that the dlsease-free steady state is linearly stable ifR(φ,λ) is less than one and unstable if R(φ,λ)is larger than one. Finally, we obtain formula for the critical reproductive numer under the assumption of constant-sized population as a special case.
出处 《数学的实践与认识》 CSCD 北大核心 2005年第8期113-122,共10页 Mathematics in Practice and Theory
基金 国家自然科学基金(10371105) 河南省自然科学基金(0312002000 0211044800)资助
关键词 年龄结构 MSEIR流行病模型 再生数 平衡态 稳定性 流行病模型 人口规模 接种疫苗 显式表达式 二次感染 age-structure MSEIR epidemic model reproductive number disease-free steady state stability
  • 相关文献

参考文献14

  • 1Busenberg S, Iannelli M, Thieme H. Global behavior of an age-structured epidemic model[J]. SIAM J Math Anal, 1991, 22(4): 1065-1080.
  • 2Greenhalgh D. Threshold and stability results for an epidemic model with an age-structured meeting rate[J]. IMA J Math Appl Med Biol, 1988, 5: 81-100.
  • 3El-Doma M. Analysis of an age-dependent SIS epidemic model with vertical transmission and proportionate mixing assumption[J]. Math Comput Model, 1999, 29: 31-43.
  • 4Cha Y, Iannelli M, Milner E. Existence and uniqueness of endemic states for the age-structured SIR epidemic model[J]. Mathematical Biosciences, 1998, 150: 177-190.
  • 5Iannelli M, Kim M Y, Park E J. Asymptotic behavior for an SIS epidemic model and its approximation[J].Nonlinear Analysis, 1997, 35: 797-814.
  • 6Cooke K L, P Van Den Driessche. Analysis of an SEIRS epidemic model with delays[J]. J Math Biol, 1996, 35:240-258.
  • 7Li X, Geni G, Zhu G. Threshold and stability results for an age-structured SEIR epidemic model[J]. Comput Math Appl, 2001, 42: 883-907.
  • 8Anderson R M, May R M. Population biology of infectious dissease I [J]. Nature, 1979, 180: 361.
  • 9Anderson R M, May R M. Population biology of infectious dissease Ⅱ [J]. Nature, 1979, 180: 455.
  • 10Webb G B. Theory of Nonlinear Age-Dependent Population Dynamics[M]. New York and Basel: Marcel Dekker,1985.

同被引文献22

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部