期刊文献+

基于模糊支持向量机和核方法的目标检测方法研究 被引量:7

Study of Object Detection Based on FSVM and Kernel Methods
下载PDF
导出
摘要 介绍了模糊支持向量机(FSVM)理论,利用FSVM理论解决一般场景图像中的目标检测问题,并利用统计学习理论和支持向量机方法研究中形成的新的机器学习方法——核方法,研究FSVM的隶属度确定问题。实验表明,本算法具有较高的识别精度。本方法既具有针对性,又在理论上具有一般性,对推动模糊支持向量机这一新的模式分类方法的实际应用具有积极意义。 This thesis introduces the theory of FSVM briefly and application in an object detection system, and discusses in detail the core techniques and algorithms which determine the fuzzy memberships based on kernel methods. The algorithms takes the object detection problem as two classes classification, thus it can take the advantages of the Fuzzy SVM. The experiments show that the algorithms have good results.
出处 《天津科技大学学报》 CAS 2005年第3期29-32,共4页 Journal of Tianjin University of Science & Technology
基金 天津市高等学校科技发展基金项目(20030608)天津科技大学人才启动基金资助项目(20030412)
关键词 目标检测 核方法 模糊支持向量机 隶属度 object detection kernel methods FSVM fuzzy membership
  • 相关文献

参考文献9

  • 1Yongjun Ma, Tingjian Fang, Kai Fang, et al. Texture Image Classification Based on Support Vector Machine and Distance Classification[ A ]. In: IEEE Proceedings of the 4th world Congress on Intelligent Control and Automation [ C ]. Shanghai,P. R. China,2002, ( 1 ) :551-554.
  • 2马永军,方凯,方廷健.基于支持向量机和距离度量的纹理分类[J].中国图象图形学报(A辑),2002,7(11):1151-1155. 被引量:17
  • 3E. Osuna, Robert Freund and Federico Girosi. Training Suppor Vector Machines:An Application to Face Detection [ A ].In: Proceedings of CVPR'97 [ C ]. Puerto Rico, 1997.
  • 4C. Papageorgiou, T. Poggio. A Trainable Object Detection System. Cai Detection in Static Images. MIT. A. I. Memo No. 1673[R]. 1999.
  • 5ChunFu Lin, ShengDe Wang. Fuzzy Support Vector Machines[J]. IEEE Trans. On Neural Networks, 2002, 13(2) :464-471.
  • 6V. A. Anisimov, N. Gotsky. Fast hierachical match-ing of an arbirarily oriented template [ J ]. Pattem Recognition Letters,1993,14(2) :95-101.
  • 7C. Papageorgiou,T. Poggio. A Pattem Classification Apporach to Dynamical Object Detection [ J ]. Proceedings of ICCV,1990,1223 -1228.
  • 8H. Schneiderman, T. Kanadel. Object Detection Using the Statistics of Parts[ J]. International Journal of Computer Vision,2002, (55) :73-81.
  • 9T. Zhao, R. Nevatia. Car detection in low resolution aerial image[ J]. Computer Vision,2001, ( 1 ) :710-717.

二级参考文献6

共引文献16

同被引文献64

引证文献7

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部