期刊文献+

Bi_(2-x)Sb_xTe_3温差电材料薄膜的电化学制备、表征及性能研究 被引量:1

Structure and Property Characterization of Bi_(2-x)Sb_xTe_3 Thermoelectric Films Prepared by Electrodeposition
下载PDF
导出
摘要 采用电化学控电位沉积的方法制备了Bi2-xSbxTe3温差电材料薄膜.通过ESEM、XPS、XRD、EDS等方法对电沉积薄膜的形貌、结构和组成进行了研究,并测试了在不同电位下制备的Bi2-xSbxTe3薄膜的温差电性能.研究结果表明,在含有Bi3+、HTeO2+和SbO+的溶液中,采用控电位沉积模式,可实现铋、锑、碲三元共沉积,生成锑掺杂的Bi2Te3化合物Bi2-xSbxTe3.通过调节沉积电位,可控制电沉积Bi2-xSbxTe3薄膜的掺杂浓度,从而影响材料的温差电性能.控制沉积电位为-0.5V条件下制备的温差电材料薄膜的塞贝克系数最大,为213μV·K-1,其组成为Bi0.5Sb1.5Te3.随着沉积电位的负移,电沉积出的Bi2-xSbxTe3薄膜的结晶状态将逐渐由等轴晶转变为树枝晶.研究证明,电沉积方法可以制备出性能优异的薄膜温差电材料. Bi2-xSbxTe3 thermoelectric films were prepared by potentiostatic electrodeposition. The morphology, structure and composition of the electrodeposited films were investigated by ESEM, XPS, XRD, and EDS. And the Seebeck coefficients of Bi2-xSbxTe3 thermoelectric films electrodeposited at different potentials were measured. The results indicate that bismuth, antimony and tellurium can be coelectrodeposited to form Sb doped Bi2Te3 compouds Bi2-xSbxTe3 in the solution containing Bi^3+, HTeO2^+and SbO^+. The doping concentration of Bi2-xSbxTe3 thermoelectric films can be controlled through adjusting electrodeposition potential to affect their thermoelectric properties. The composition of the film electrodeposited at -0.5V is Bi0.5Sb1.5Te3, and it has the largest Seebeck coefficient of 213μV·K^-1. With the decrease of electrodeposition potential, the crystalline state of Bi2-xSbxTe3 film will transform from equiaxed crystal into dendritic crystal. The study shows that the electrodeposition process can be successfully used to synthesize the thermoelectric films with better properties.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2005年第5期1234-1238,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(50071040)
关键词 温差电材料薄膜 Bi2-xSbxTe3化合物 电沉积 塞贝克系数 thermoelectric films bismuth antimony telluride compounds electrodeposition Seebeck coefficient
  • 相关文献

参考文献9

  • 1Wang W, Huang Q H, Jia F L, et al. J. Appl. Phys., 2004, 96: 615-618.
  • 2Wang W, Zhang W L, Wang H, et al. J. Inorg. Mat. (Chinese), 2004, 19: 127-132.
  • 3Hicks L D, Harman T C, Dresselhaus M S. Appl. Phys. Lett., 1993, 63: 3230-3232.
  • 4Sales B C, Mandrus D, Williams R K. Science, 1996, 272: 1325.
  • 5Ebisumori K, Tauchi H, Shinohara Y, et al. 17th International Conference on Thermoelectrics, 1998, Nagoya,Japan.
  • 6Zhao X B, Hu S H, Zhao M J, et al. Materials Letters, 2002, 52: 147-149.
  • 7Kim I H. Materials Letters, 2000, 44: 75-79.
  • 8Koukharenko E, Fréty N, Shepelevich V G, et al. Journal of Alloys and Compounds, 2001, 327: 1-4.
  • 9Marisol M G, Amy L P, Ronald G, et al. Advanced Materials, 2003, 15: 1003-1006.

同被引文献11

  • 1涂伟毅,徐滨士,董世运,蒋斌,杜令忠,胡振峰.纳米二氧化硅对镍电沉积影响及在复合镀层中的化学键合状态[J].化学学报,2004,62(20):2010-2014. 被引量:8
  • 2Yang J J,Zhu W,Gao X H et al.J Electroanal Chem[J].2005,577:117.
  • 3Huang Qinghua(黄庆华) Investigations on the Electrochemical Preparation,Characterization and Forming Mechanism of Bi2Te3 Based Thermoelectric Thin Films and Nanowires(Bi2Te3基温差电材料薄膜和一维纳米线的电化学制备、表征及形成机制研究)[D].Tianjin:University of Tianjin,2005.
  • 4Kim I H.Mater Lett[J].2000,44:75.
  • 5Takashiri M,Miyazaki K,Tsukamoto H.Thin Solid Films[J].2008,516(18):6336.
  • 6Koukharenko E,Frety N,Shepelevich V G et al.J Alloys Compd[J].2001,327(1-2):1.
  • 7Chen J,Fan H Q,Chen X L et al.J Alloys Compd[J].2009,471(1-2):L51.
  • 8Zhang L,Zhai J W,Yao X.J Am Ceram Soc[J].2008,91(6):2075.
  • 9Wang C F,Wang Q,Chen L D et al.Electrochem Solid-State Lett[J].2006,9(9):C147.
  • 10Bu L X,Wang W,Wang H.Mater Res Bull[J].2008,43(7):1808.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部