期刊文献+

路与星联图的点可区别边染色 被引量:2

On Vertex-distinguishing Edge Coloring of P_m∨K_(1,n)
下载PDF
导出
摘要 对图G的正常边染色,若满足不同点的点所关联边色集合不同,则称此染色法为点可区别的边染色法,其所用最少染色数称为该图的点可区域边色数。本文得到了路与星的联图的点可区别边色数。 The normal edge coloring for a graph G is called vertex-distinguishing edge coloring method if every two vertices are incident to an edge with the vertex and the minimum number of colors required is called the number of a vertex-distinguishing edge-coloring of the graph G denoted by X'vd(G), In this paper, we have given the vertex-distinguishing edge chromatic number of Pm∨K1,n.
出处 《山东科技大学学报(自然科学版)》 CAS 2005年第3期90-93,共4页 Journal of Shandong University of Science and Technology(Natural Science)
基金 国家自然科学基金资助项目(19871036)
关键词 点可区别边染色 点可区别边色数 graph vertex-distinguishing edge coloring vertex-distinguishing edge chromatic number.
  • 相关文献

参考文献12

  • 1Alon N, Spencer J. The Probabilistic Method [M]. New York: John Wiley & Sons,Inc, 1992.
  • 2Aiger M, Triesch E, Tuza Z, Barlottiet A,et al. Irregular assignments and vertex-distinguishing edge-colorings of graphs [M]. New York: Combinatorics 90, Elsevier Science Pub., 1992.
  • 3Balister P N and B. Bollob\{a}s and R. H. Schelp, vertex distinguishing colorings of graphs with △ ( G ) = 2[J]. Discrete Mathematics, 2002,252:17 ~ 29.
  • 4Bazgan C, Harkat-benhamdine A, Li Hao, etc. On the vertex-distinguishing proper edge-colorings of graphs[J]. J. Combin. Theory, Ser. B \ bibitem, 1999,75: 288~301.
  • 5Burris A C and Schelp R H. Vertex-distinguishingproper edge-colorings[ J ]. J of Graph Theory, 1997,26 (2): 73~82.
  • 6Dedo E, Torri D and Norma Zagaglia Salvi. Theobservability of the Fibonacci and Lucas cubes [J]. Discrete Mathematics, 2002,255: 55 ~ 63.
  • 7Favaron Odile, Li Hao and Schelp R H. Strong edge-coloring of graphs[J ]. Dscrete Mathematics, 1996,159:103 ~ 109.
  • 8Mirko Hornak and Roman Sotak. Asymptotic behaviour of the observability of Q. k [ J ]. Discrete Mathematics, 1997,176:139 ~ 148.
  • 9Zhang Zhong-fu, Liu Lin-zhong, Wang Jian-fang. Adjacent strong edge coloring of graphs [J ]. Applied Mathematics Letters, 2002,15: 623~ 626.
  • 10Chartrand G, Lesniak-Foster L. Graph and Digraphs[M]. Monterey, CA: Ind Edition, Wadsworth Brooks/Cole, 1986.

同被引文献10

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部