摘要
The surface nanocrystallization of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by CO2 laser was studied by means of M(oe)ssbauer spectroscopy, transmission electro iroscope and X-ray diffraction. The result shows that under certain technical conditions, nanocrystalline is fiound on the surface of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by laser; the crystallization phase is α-Fe(Si) crystalline, and its size is about 10-20 nm; the nanocrystalline is uniformly distributed on amorphous base to keep the amorphous and crystallized phase in balance; the a mount of crystallization reaches 23% when the laser power is 300 W, the diameter of light spot is 20 mm, and the radiation speed is 20 mm/s. The phase balance can be controlled by adjusting the laser technology parameter. Laser radiation on the amorphous Fe73.5 Cu1Nb3Si13.5B9 alloy is an important technique for surface nanocrystallization of the amorphous alloys.
The surface nanocrystallization of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by CO2 laser was studied by means of M(oe)ssbauer spectroscopy, transmission electro iroscope and X-ray diffraction. The result shows that under certain technical conditions, nanocrystalline is fiound on the surface of amorphous Fe73.5 Cu1Nb3Si13.5B9 radiated by laser; the crystallization phase is α-Fe(Si) crystalline, and its size is about 10-20 nm; the nanocrystalline is uniformly distributed on amorphous base to keep the amorphous and crystallized phase in balance; the a mount of crystallization reaches 23% when the laser power is 300 W, the diameter of light spot is 20 mm, and the radiation speed is 20 mm/s. The phase balance can be controlled by adjusting the laser technology parameter. Laser radiation on the amorphous Fe73.5 Cu1Nb3Si13.5B9 alloy is an important technique for surface nanocrystallization of the amorphous alloys.
基金
ItemSponsoredbyShenyangScienceTechnologyPlan(1032040-1-01)andFoundationofEducationMinistryofChinaforPersonofAbilityBestridingCentury