期刊文献+

Cauchy-Stieltjes积分和面积平均p叶函数 被引量:1

Cauchy-Stieltjes Integrals and Areally Mean p-Valent Functions
原文传递
导出
摘要 本文研究由Cauchy-Stieltjes积分形成的函数空间Fα.首先给出这个空间的一个等价定义,然后研究面积平均p叶函数的对数函数和这个函数空间的关系,最后对单叶函数的情形做进一步的讨论.根据这种研究,我们得到了有界单叶函数的系数增长估计,这是目前最好的结果. We consider the function space Fα consisting of Cauchy-Stieltjes integrals. First, we give an equivalent definition of this space, then study the relation between this space and the logarithmic function of areally mean p-valent function, and finally we discuss further this relation for the case of univalent functions. From this investigation, we obtain a growth estimation about the coefficients of bounded univalent functions, which is the best result up to now.
作者 董新汉 杨密
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第5期851-858,共8页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(19871026)
关键词 CAUCHY-STIELTJES积分 面积平均P叶函数 单叶函数 Cauchy Stieltjes integral Areally mean p-valent function Univalent function
  • 相关文献

参考文献25

  • 1Mattila P., Geometry sets and measures in euclidean spaces, Fractals and Rectifiability, in: Cambridge Studies in Advanced Mathematics, Cambridge: Cambridge Univeristy Press, 1995, Vol. 44.
  • 2Garnett J., Analytic capacity and measure, in: Lecture Notes in Mathematics, Berlin: Springer, 1972, Vol.297.
  • 3David G., Unrectifiable i-sets have vanishing analytic capacity, Rev. Mat. Iberoamericana, 1998, 14: 369-479.
  • 4Dong X. H., Lau K. S., Cauchy transforms of self-similar measures: the Laurent coefficients, J. Functional Analysis, 2003, 202: 67-97.
  • 5Hallenbeck D. J., MacGregor T. H., Linear problems and convexity techniques in geometric function theory,New York: Putnam Publishing, 1984.
  • 6Brickman L., Hallenbeck D. J., MacGregor T. H. and Wilken D. R., Convex hulls and extreme points of families of starlike and convex mappings, Trans. AMS., 1973, 185: 413-428.
  • 7MacGregor T. H., Analytic and univalent functions with integral representations involving complex measures,Indiana Univ. Math. J., 1987, 36: 109-130.
  • 8Hallenbeck D. J., MacGregor T. H., Samotij K., Fractional cauchy transforms, inner functions and multipliers,Proc. London Math. Soc., 1996, 72(3): 157-187.
  • 9Hibschweiler R. A., MacGregor T. H., Multipliers of families of Cauchy-Stieltjes transforms, Trans. AMS.,1992, 331: 377-394.
  • 10Liu C. W., Shi J. H., Families of fractional Cauchy-Stieltjes integrals in Cn, Chinese Ann. Math., 2002,23A(3): 297-306 (in Chinese).

同被引文献8

  • 1[1]D J Hallenbeck,T H Macgregor.Linear problems and convexity techniques in geometric function Theory[M].New York:Putnam Publishing,1984.
  • 2[2]L Brickman,D J Hallenbeck,T H Macgregor,et al.Convex hulls and extreme points of fanilies of starlike and convex mappings[J].Trans Amer Math Soc,1973,(185):413-428.
  • 3[3]R A Hibschweiler,T H Macgregor.Multipliers of families of Cauchy-stieltjes transforms[J].Tran Amer Math Soc,1992,(331):377-394.
  • 4[4]D J Hallenbeck,T H Macgregor,K Samotij.Fractional cauchy transforms inner functions and multipliers[J].Proc London Math Soc,1996,72(3):157-187.
  • 5[5]R A Hibschweiler,E Nordgren.Cauchy transforms of measures and weighted shift operators on the disc algebra[J].Rocky Mountain J Math,1996,(26):627-654.
  • 6[6]P L Duren.Theory of Hp Spaces[M].New York:Academic Press,1970.
  • 7[7]D J Hallenbeck,K Samotij.On Cauchy integrals of logarithmic potentials and their multipliers[J].J Math Anal Appl,1993,(174):614-634.
  • 8[9]X H Dong,K S Lau.Cauchy transforms of self-similar measures:the Laurent coefficients[J].J Funct Anal,2003,(202):67-97.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部