摘要
设G(V,E)是至少含有一条边的无环图,f厂是定义在V上的整值函数且对任意的v∈V,有1≤f(v)≤d(v).若边染色C使所用的每一种颜色在任一顶点v上至少出现f(v)次,则称该染色C为,f-边覆盖染色.能对图G进行,f-边覆盖k-边染色的最大颜色数k,称为图G的,f-边覆盖色数,记为X'fc(G).本文提供了一个关于X'fc(G)的Vizing型定理,使一些已有重要结论得以推广;研究了一些使X'fc(G)达到该Vizing型定理上界的几类图或函数f,还讨论了f-边覆盖染色的变型,提出了一些可进一步研究的问题.
Let G(V, E) be a loop-less graph with at least one edge, and let f be an integer function on V such that 1 ≤ f(υ) ≤d(υ) for any υ ∈ V. An f-edge cover-coloring is an edge coloring C such that each color appears at each vertex v at least f(υ) times. The f-edge cover chromatic index of G, denoted by X'fc(G), is the maximum k such that an f-edge cover κ-edge coloring exists. In this paper we provide a Vizing type theorem for X'fc(G) which generalizes a known result. We also investigate graph G or function f such that X'fc(G) attains the upper bound in the Vizing type theorem. A variation of f-edge cover-coloring of graphs and some open problems are proposed.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2005年第5期919-928,共10页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金(10471078)高等学校博士点学科专项基金山东大学威海分校基金资助项目
关键词
多重图
边染色
f-边覆盖染色
Multiple graph
Edge-coloring
f-edge cover-coloring