期刊文献+

图的f-边覆盖染色 被引量:3

On f-Edge Cover-Coloring of Graphs
原文传递
导出
摘要 设G(V,E)是至少含有一条边的无环图,f厂是定义在V上的整值函数且对任意的v∈V,有1≤f(v)≤d(v).若边染色C使所用的每一种颜色在任一顶点v上至少出现f(v)次,则称该染色C为,f-边覆盖染色.能对图G进行,f-边覆盖k-边染色的最大颜色数k,称为图G的,f-边覆盖色数,记为X'fc(G).本文提供了一个关于X'fc(G)的Vizing型定理,使一些已有重要结论得以推广;研究了一些使X'fc(G)达到该Vizing型定理上界的几类图或函数f,还讨论了f-边覆盖染色的变型,提出了一些可进一步研究的问题. Let G(V, E) be a loop-less graph with at least one edge, and let f be an integer function on V such that 1 ≤ f(υ) ≤d(υ) for any υ ∈ V. An f-edge cover-coloring is an edge coloring C such that each color appears at each vertex v at least f(υ) times. The f-edge cover chromatic index of G, denoted by X'fc(G), is the maximum k such that an f-edge cover κ-edge coloring exists. In this paper we provide a Vizing type theorem for X'fc(G) which generalizes a known result. We also investigate graph G or function f such that X'fc(G) attains the upper bound in the Vizing type theorem. A variation of f-edge cover-coloring of graphs and some open problems are proposed.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2005年第5期919-928,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10471078)高等学校博士点学科专项基金山东大学威海分校基金资助项目
关键词 多重图 边染色 f-边覆盖染色 Multiple graph Edge-coloring f-edge cover-coloring
  • 相关文献

参考文献6

  • 1Bondy J. A. and Murty U. S. R., Graph theory with applications, London: MacMillan, 1976.
  • 2Gupta R. P., On decompositions of a multigraph into spanning subgraphs, Bull. Amer. Math. Soc., 1974,80: 500-502.
  • 3Miao L. Y. and Liu G. Z., Edge covered coloring and fractional edge covered coloring, Journal of Systems Science and Complexing, 2002, 15(2): 187-193.
  • 4Hilton A. J. W., Colouring the edges of a multigraph so that each vertex has at most j, or at least j edges of each colour on it, J. London Math. Soc., 1975, 12(2): 123-128.
  • 5Hakimi S. L. and Kariv O., On a generalization of edge-coloring, Journal of Graph Theory, 1986, 10: 139-154.
  • 6Hilton A. J. W and Werra D. de, A sufficient condition for equitable edge-coloring of simple graphs, Discrete Math., 1994, 128: 179-201.

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部