两维局部环的一个重数不等式
On an Inequality of Multiplicities for Two Dimensional Local Rings
摘要
本文用一种新的方法研究了有关一维Noether环的一个不等式.通过用重数替换长度进一步地把该不等式推广到二维的情形.
In this paper, we study a well-known inequality on Noether rings with one dimension by another method. We will replace the length function with the multiplicity; thus we can rewrite the inequality and extend the inequality to rings with dimension more than one.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2005年第5期935-938,共4页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目(10271090)
参考文献6
-
1Brown W. C., Herzog J., One dimensional local rings of maximal and almost maximal length, J. Algebra,1992, 151: 332-347.
-
2Delfino D., On the inequality λ(-R/R) ≤ t(R)λ(R/I) for one dimensional local rings, J. Algebra, 1994, 169:332-342.
-
3Fro R., Gottlieb C., Haggkvistqw R., Semigroups, Semigroups rings and analytically irreducible rings, Report No. 1, University of Stockholm, Sweden, 1986.
-
4Herzog J., Kunz E., Der kanonische module eines Cohen-Macaulay rings, New York: Lecture Notes in Mathematics, Springer-Verlage, 1971, 238.
-
5Matsumura H., Commutative ring theory, New York: Cambrige Univ. Press, 1986.
-
6Northcott D. G., Rees D., Reductions of ideals in local rings, Proc. Camb. Philos. Soc., 1954, 50: 145-158.