期刊文献+

复指数多项式在半带形中的完备性 被引量:4

COMPLETENESS OF COMPLEX EXPONENTIAL POLYNOMIALS IN A HALF STRIP
下载PDF
导出
摘要 对复指数多项式在Banach空间Hα中的完备性给出了充分必要条件,其中Hα为在半带形Iα={z=x+iy:x≥0,|y|≤α}(α>0)中连续,在Iα的内部解析且当x→∞时,f(x+iy)在Iα中关于y一致地趋向0的函数f(x+iy)全体,其范数为上确界范数. A necessary and sufficient condition is obtained for the completeness of complex exponential polynomials in the Banach space Ho, where Ho consists of all continuous functions on the closed right half strip, analytic in its interior and such that f(z) vanishing uniformly at infinity.
作者 邓冠铁
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期331-333,共3页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10371011 10071005) 教育部留学回国人员科研启动基金资助项目
关键词 复指数多项式 完备性 半带形 completeness exponential polynomials half strip
  • 相关文献

参考文献2

  • 1KlamDauer G. Mathematical Analysis[M] . New York: Marcel Dekker, INC, 1975.
  • 2Boas Jr B P. Entire Functions[M]. New York: Academic Press, 1954.

同被引文献14

  • 1胡海娟,邓冠铁.复指数多项式在Hardy空间中的完备性[J].北京师范大学学报(自然科学版),2007,43(1):20-24. 被引量:3
  • 2邓冠铁.指数多项式在半带形中的闭包[J].数学物理学报(A辑),2007,27(3):414-419. 被引量:1
  • 3Rosenblum Marvin, Rovnyak James. Topics in Hardy Classes and Univalent Functions [M]. Berlin.. Birkhauser Verlag, 1994.
  • 4Levin B Ya, Lectures on Entire Functions, V150[_M]. Translations of Mathematical Monographs, American Mathematical Society, 1996.
  • 5Vinnitskii B V. On zeros of functions analytic in a half plane and completeness of systems of exponents [J]. Translated From Ukrainskii Matematicheskii Zhurnal, 1994, 46(5):514.
  • 6Levin B Y.Lectures on entire functions Vo1.150[M].Monographs:Am Math Soc,1996
  • 7陆善镇 王昆扬.实分析[M].北京:北京师范大学出版社,1997..
  • 8Katznelson Y.An introduction to harmonic analysis[M].3rd ed.Beijing:China Machine Press,2005
  • 9Levin B Ya. Lectures on entire functions [ M ]. Monographs: Am Math Soc, 1996.
  • 10Deng Guantie. Incompleteness and closure of a linear span of exponential system in a weighted Banach space [J]. Journal of Approximation Theory, 2003, 125 : 1.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部