期刊文献+

修正Kawahara方程解的一个光滑性质 被引量:1

A SMOOTHING PROPERTY OF SOLUTIONS OF MODIFIED KAWAHARA EQUATIONS
下载PDF
导出
摘要 设u(x,t)为修正Kawahara方程ut+au2xu+β3xu3+γ5xu5=0初值问题的解,用u1(x,t),u2(x,t)分别表示u(x,t)的线性部分和积分部分,证得当初值φ∈Hs,s≥1时,u(x,t)∈Hs+1. Let u(x,t) be the solutions of initial value problem of the modified Kawahara equations pD/pD+au^2 pD/pD+βpD3u/pD^3+γpD5u/pD^5=0.Set u1(x,t)and u2(x,t) be the linear part and integral part respectively. Thus u2 (x,t) ∈ H^s+1 is obtained when the data φ∈H'^s,s≥1.
作者 陶双平
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期351-353,共3页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10271095)
关键词 KAWAHARA方程 初值问题 光滑性 Kawahara equation initial value problem solution smoothing property
  • 相关文献

参考文献1

二级参考文献12

  • 1A. T. Il’ichev,A. Yu. Semenov.Stability of solitary waves in dispersive media described by a fifth-order evolution equation[J].Theoretical and Computational Fluid Dynamics.1992(6)
  • 2Charles J. Amick,Klaus Kirchg?ssner.A theory of solitary water-waves in the presence of surface tension[J].Archive for Rational Mechanics and Analysis.1989(1)
  • 3Cederbaum,G,,Aboudi,J,,Elishakoff,I.Dynamic instability of shear-deformable viscoelastic laminated plates by Lyapunov exponents[].International Journal of Solids and Structures.1991
  • 4Sun,Y.X.,Zheng,S.Y.Chaotic dynamic analysis of viscoelastic plates[].International Journal of Mechanical Sciences.2001
  • 5Schapery,R.A.Homogenized constitutive equations for linear viscoelastic unidirectional composites with growing transverse cracks[].Mechanics of Time Dependent Materials.2002
  • 6Huang.N.N.Viscoelastic analysis ot Von Karman laminated plates under in-plane compression with initial deflection[].IntJNon-linear Mech.1997
  • 7Chow,C.L,,Wang,J.An anisotropic theory of elasticity for continuum damage mechanics[].International Journal of Fracture.1987
  • 8Aboudi,J.,Cederbaum,G.Dynamic stability analysis of viscoelastic plates by Lyapunov exponents[].JSound Vibration.1990
  • 9Chia,C.Y.Nonlinear Analysis of Plates[]..1980
  • 10Kachanov L.M.Introduction to Continuum Damage Mechanics[]..1986

共引文献10

同被引文献10

  • 1韩天勇,李树勇.时滞2D-Navier-Stokes方程的全局吸引子[J].四川师范大学学报(自然科学版),2006,29(3):257-261. 被引量:7
  • 2AKROUNE N. Regularity of the Attractor for a Weakly Damped Nonlinear Schrodinger Equation on R[J]. Applied Mathematics Letters, 1999, 12(1): 45--48.
  • 3ZHU C S, MU C L, PU Z L. Attractor for the Nonlinear Schrodinger Equation with a Non local Nonlinear Term [J]. Journal of Dynamical and Control Systems, 2010, 16(4) : 585--603.
  • 4GOUBET O. Global Attractor for Weakly Damped Nonlinear Schrodinger Equations in L^2(R) [J]. Nonlinear Analysis Theory, 2009, 71(2): 317--320.
  • 5GHIDAGLIA J M, TEMAM R. Attractors for Damped Nonlinear Hyperbolic Equations [J]. Journal de Mathematiques Pures et Appliquees, 1987, 66(3): 273--319.
  • 6EZZOUG E, KECHICHE W, ZAHROUNI E. Finite Dimensional Global Attractor for a Eemi-Discrete Nonlinear Schrod- inger Equation with a Point Defect [J]. Applied Mathematics and Computation, 2011, 217(19): 7818--7830.
  • 7GOUBET O, ZAHROUNI E. On a Time Discretization of a Weakly Damped Forced Nonlinear Schrodinger Equation [J]. Communication on Pure Applied Analysis. 2008, 7(6): 1429--1442.
  • 8张辉群.修正的Kawachara方程的精确解[J].青岛大学学报(自然科学版),1998,11(4):24-26. 被引量:3
  • 9谢周艳,朱朝生.无界区域R^1上耗散mBBM方程的全局吸引子[J].西南师范大学学报(自然科学版),2013,38(5):15-19. 被引量:2
  • 10陶双平,崔尚斌.非线性Kawahara方程解的存在唯一性[J].数学年刊(A辑),2002,23(2):221-228. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部