期刊文献+

Electrocatalytic Activity of Pt/C Electrodes for Ethanol Oxidation in Vapor Phase

Electrocatalytic Activity of Pt/C Electrodes forEthanol Oxidation in Vapor Phase
下载PDF
导出
摘要 High performance platinized-carbon electrodes have been developed for the electrocatalytic oxidation of ethanol to acetaldehyde in electrogenerative processes. A load current density of the electrode can be achieved as high as 600 mA per square centimeter for oxygen reducing in 3 mol/L sulfuric acid with a good stability. With these electrodes and sulfuric acid as an electrolyte in fuel cells, ethanol vapor carried by nitrogen gas can be oxidized selectively to acetaldehyde. Selectivity of acetaldehyde depends on the potential of the cell and the feed rate of ethanol vapor and it can be more than 80% under optimized conditions. The initial product of ethanol oxidized on a platinized-carbon electrode is acetaldehyde and the ethanol oxidation mechanism is discussed. High performance platinized-carbon electrodes have been developed for the electrocatalytic oxidation of ethanol to acetaldehyde in electrogenerative processes. A load current density of the electrode can be achieved as high as 600 mA per square centimeter for oxygen reducing in 3 mol/L sulfuric acid with a good stability. With these electrodes and sulfuric acid as an electrolyte in fuel cells, ethanol vapor carried by nitrogen gas can be oxidized selectively to acetaldehyde. Selectivity of acetaldehyde depends on the potential of the cell and the feed rate of ethanol vapor and it can be more than 80% under optimized conditions. The initial product of ethanol oxidized on a platinized-carbon electrode is acetaldehyde and the ethanol oxidation mechanism is discussed.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第5期597-600,共4页 高等学校化学研究(英文版)
基金 Supported Partially by the Ministry of Education of China.
关键词 ETHANOL PLATINUM Electrocatalytic oxidation ACETALDEHYDE Ethanol, Platinum, Electrocatalytic oxidation, Acetaldehyde
  • 相关文献

参考文献14

  • 1Palsson B. O. , Fathi-Afahar S. , Rudd D. F. , et al. , Science,1981, 213, 513.
  • 2Hitmi H. , Belgsir E. M. , Leger J. M. , et aL , Electrochim.Acta, 1994, 39(3), 407.
  • 3Jungwon Shin, Wade J. Tornquist, Card Kovzeniewski. et al. ,Surface Science, 1996, 364, 122.
  • 4Schmid! V. M., Lanniello R., Paslor E., et al., J. Phys.Chem. , 1996, 100(45), 17901.
  • 5Lanuiello R., Schmid! V. M., Rodriguez J. L., et al., J.Electronal. Chem. , 1999, 471, 167.
  • 6Tremiliosi-Filho G. , Gouzalez E. R. , Molheo A. J. , et al. , J.Electroanal. Chem. , 1998, 444, 31.
  • 7Fujiwara N. , Friedriech K. , Stimming A. U. , J. Electroanal.Chem. , 1999, 472, 120.
  • 8Nero A. 0., Giz M. J., Perez J., et al., J. Electrochem.Soc., 2002, 149, A272.
  • 9Ma Guo-xian, Tang Ya-wen, Yang Hui, et al. , Acta Phys.-Chem. Sin. , 2003, 19, 1001.
  • 10Qian Yong-gui, Sun Zi-jie, Hu Jing-bo, et al. , Chem. Res. Chinese Universities, 2004, 20( 1 ) , 103.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部