摘要
对图G及正整数k,映射:σVUE→{1,2,…,k}满足:(1)任意e1,e2∈VUE,如果e1,e2是相邻或相关联的,则有σ(e1)≠σ(e2);(2)对u,v,w∈V(G),uw,vw∈E(G),uv E(G)有σ(u)≠σ(v),则称σ为G的一个k-点强全染色,并且vTsχ(G)={k|存在G的k点强全染色},称为G的点强全色数.研究了六色系统图G的点强全色数,得到Δ(G)+1≤vTsχ(G)≤Δ(G)+2,其中Δ(G),vTsχ(G)分别表示G的最大度和点强全色数.
Let G(V,E) be a graph,for a positive integer k ,a mapping σ:VUE → { 1,2,…,k} satisfies with (1)If e1,e2∈ VUE and e1,e2 is adjacent or incident,then σ(e1) ≠σ(e2) ;(2)For u,v,w ∈ V(G),uw, vw ∈ E(G) ,uv ¢ E(G) have σ(u) ≠ σ(v) ,then σ is called a k - vertex strong total coloring of G and xτ^vs (G) = { k | there exists k - vertex strong total coloring of G } is called the vertex strong total chromatic number of G. Obtained the result thatΔ(G) + 1 ≤〈Xτ^vs(G) ≤Δ(G) +2 , whereΔ(G) andx^τ^vs(G) denote maximum degree and vertex strong total chromatic number of hexagonal system G respectively.
出处
《湖北大学学报(自然科学版)》
CAS
北大核心
2005年第3期208-210,共3页
Journal of Hubei University:Natural Science
关键词
六角系统
点强全色数
图
hexagonal system
vertex strong total chromatic number
graph