期刊文献+

六角系统的点强全色数

On the vertex strong chromatic number of hexagonal system
下载PDF
导出
摘要 对图G及正整数k,映射:σVUE→{1,2,…,k}满足:(1)任意e1,e2∈VUE,如果e1,e2是相邻或相关联的,则有σ(e1)≠σ(e2);(2)对u,v,w∈V(G),uw,vw∈E(G),uv E(G)有σ(u)≠σ(v),则称σ为G的一个k-点强全染色,并且vTsχ(G)={k|存在G的k点强全染色},称为G的点强全色数.研究了六色系统图G的点强全色数,得到Δ(G)+1≤vTsχ(G)≤Δ(G)+2,其中Δ(G),vTsχ(G)分别表示G的最大度和点强全色数. Let G(V,E) be a graph,for a positive integer k ,a mapping σ:VUE → { 1,2,…,k} satisfies with (1)If e1,e2∈ VUE and e1,e2 is adjacent or incident,then σ(e1) ≠σ(e2) ;(2)For u,v,w ∈ V(G),uw, vw ∈ E(G) ,uv ¢ E(G) have σ(u) ≠ σ(v) ,then σ is called a k - vertex strong total coloring of G and xτ^vs (G) = { k | there exists k - vertex strong total coloring of G } is called the vertex strong total chromatic number of G. Obtained the result thatΔ(G) + 1 ≤〈Xτ^vs(G) ≤Δ(G) +2 , whereΔ(G) andx^τ^vs(G) denote maximum degree and vertex strong total chromatic number of hexagonal system G respectively.
出处 《湖北大学学报(自然科学版)》 CAS 北大核心 2005年第3期208-210,共3页 Journal of Hubei University:Natural Science
关键词 六角系统 点强全色数 hexagonal system vertex strong total chromatic number graph
  • 相关文献

参考文献9

  • 1Gyvin S T,Gutman I.Kekule structures in benzenoid hydrocarbons[M].Berlin:Springer-Verlag,1988.
  • 2张忠辅.六角系统的边面点面全色数[J].宁波大学学报(理工版),1995,8(1):23-25. 被引量:2
  • 3Harary F.Conditional colorability in graphs,in graphs and application[M].New York:John Wiley & Sons Inc,1985.
  • 4Favaron Odie,Hao Li,Schlep R H.Strong edge coloring of graphs[J].Discrete Mathematics,1996,159:103~109.
  • 5Zhang Zhong-fu,Liu Lin-zhong,Wang jian-fang.Adjacent strong edge coloring of graphs[J].Applied Mathematics Letters,2002,15:603~606.
  • 6周厚春,任庆军,董立华.超图的强星色数[J].运筹学学报,1999,3(3):69-72. 被引量:3
  • 7张忠辅,刘林忠,王建方,袁晋江.图的强染色[J].西北师范大学学报(自然科学版),2002,38(1):28-29. 被引量:14
  • 8刘林忠,谢继国,张忠辅.若干图的点强全染色(英文)[J].经济数学,1998,15(3):52-55. 被引量:7
  • 9Bondy J A,Murty U S R.Graph theory with application[M].London:Macmillan Press,1976.

二级参考文献5

  • 1[1]Gary Chartrand,Linda Lesniak Foster.Graphs and Digraphs[M].Monterey:Wadsworth Books/Cole,1986.1-150.
  • 2[2]Roy Nelson,Robin J Wilson.Graph Colorings[M].London:Pitman Research Notes in Mathematic Series,1990.218.
  • 3[3]Harary F.Conditional colorability in graphs[A].Graphs and Applications.Proc.First Colorado Symp.Graph Theory[C].New York:John Wiley & Sons Inc,1985.1-200.
  • 4Hadad L,Discrete Math,1995年,146期,45页
  • 5胡冠章,张忠辅.关于平面图的边面全着色[J].清华大学学报(自然科学版),1992,32(3):18-23. 被引量:9

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部