期刊文献+

基于Parzen核估计的ICA算法及其性能分析 被引量:1

Independent Component Analysis Algorithm Based on Parzen Kernel Estimator and Performance Analysis
下载PDF
导出
摘要 基于概率密度非参数估计的Parzen核估计,提出了一种新的独立成分分析(ICA)算法,实现了对源信号分布的全“盲”要求。该算法由观测信号样本出发,实现了对分离信号评价函数的直接估计,从而在一定程度上解决了ICA算法中如何选取估计信号评价函数的难题且能对任意的源混合信号(包括:超高斯与亚高斯分布,对称与非对称分布)进行有效盲分离。模拟实验从统计性质和计算时间2个方面说明了所提算法的性能。 A novel independent component analysis(1CA) algorithm based on nonparametric density estimation——Parzen kernel estimate was proposed, which was truly blind to the source signals. The nonparametric density estimation was directly evaluated from the original data samples. It .solved an important problem in ICA: how to choose nonlinear functions as the probability density function estimation of the sources. The proposed 1CA algorithm was able to .separate a wide range of source signals, including sub- and super-Gaussian .sources, symmetric and asymmetric .sources. Simulations showed the effectiveness of the proposed algorithm along two sets of criteria: statistical and computational.
出处 《武汉理工大学学报》 EI CAS CSCD 北大核心 2005年第9期93-96,共4页 Journal of Wuhan University of Technology
基金 国家自然科学基金(60472062) 湖北省自然科学基金(2004ABA038).
关键词 独立成分分析 评价函数 自然梯度 Parzen核估计 independent component analysis .score function natural gradient Parzen kernel estimatc
  • 相关文献

参考文献8

  • 1Comon P. Independent Component Analysis:A New Concept[J].Signal Processing,1994,36(3):287-314.
  • 2Amari S.Natural Gradient Works Efficiently in Learning[J].Neural Computation,1998,10(1):251-276.
  • 3张贤达,朱孝龙,保铮.Grading learning for blind source separation[J].Science in China(Series F),2003,46(1):31-44. 被引量:14
  • 4Hyvarinen A,Oja E. A Fast Fixed-point Algorithm for Independent Component Analysis[J]. Neural Computation,1998,9(7):1483-1492.
  • 5Cardoso J F. High-order Contrasts for Independent Component Analysis[J]. Neural Computation,1999,11(1):157-192.
  • 6Bach F R,Jordan M I. Kernel Independent Component Analysis[J].J Machine Learning Res,2002,3(1):1-48.
  • 7Wang F S,Li H W,Li R,et al. Novel Algorithm for Independent Component Analysis with Flexible Score Functions[A]. 7th Int Conf Signal Processing Proceedings[C].Beijing:IEEE Press,2004.132-135.
  • 8Boscolo R,Pan H,Roychowdhury V P. Independent Component Analysis Based on Nonparametric Density Estimation[J]. IEEE Trans on Neural Networks,2004,15(1):55-65.

二级参考文献22

  • 1[1]Hyvarinen, A., Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Networks,1999, 10(3): 626-634.
  • 2[2]Giannakopoulos, V., Comparison of adaptive independent component analysis algorithms, Available at http://www.cis.hut. fi/~xgiannak/.
  • 3[3]Bell, A. J., Sejnowski, T. J., An information-maximization approach to blind separation and blind deconvolution, Neural Computations, 1995, 7:1129-1159.
  • 4[4]Karhunen, J., Joutsensalo, J., Representation and separation of signals using nonlinear PCA type learning, Neural Net works, 1994, 7: 113-127.
  • 5[5]Karhunen, J., Pajunen, P., Oja, E., The nonlinear PCA criterion in blind source separation: Relations with other approaches, Neural Computing, 1998, 22: 5-20.
  • 6[6]Comon, P., Independent component analysis, a new concept? Signal Processing, 1994, 36:287-314.
  • 7[7]Pham, D. T., Blind separation of instantaneous mixtures of sources via an independent component analysis, IEEE Trans. Signal Processing, 1996, 44: 2768-2779.
  • 8[8]Cardoso, J. F., Laheld, B., Equivariant adaptive source separation, IEEE Trans. Signal Processing, 1996, 44: 3017-3030.
  • 9[9]Yang, H. H., Amari, S., Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mu tual information, Neural Computations, 1997, 9:1457-1482.
  • 10[10]Yang, H. H., Serial updating rule for blind separation derived from the method of scoring, IEEE Trans. Signal Processing, 1999, 47: 2279-2285.

共引文献13

同被引文献10

  • 1李晓辉,吴小培,吴蓓.基于独立分量分析的DS-CDMA下行信道延迟估计[J].系统仿真学报,2005,17(4):954-956. 被引量:3
  • 2Castedo L, Escudero C, Dapena A. A Blind Signal Separation Methodfor Multiuser Communication [J]. IEEE Trans. on Signal Processing, 1997,45(5) : 1343-1348.
  • 3Bensley S, Aazhang B. Subspaee-based Channel Estimation for CodeDivision Multiple Access Communication System. IEEE Trans. onCornmunication [J]. 1996, 44(8): 1009-1020.
  • 4E. Strom, S. Parkvall, S. Miller, B. OttersterL Propagation Delay Estimation in Asynchronous Direct - Sequence Code - division Multiple Access Systems. IEEE Trans. Commun. , January 1996, vol. 44:84-93.
  • 5Amari S,Chichocki A, Yang H H. A new learning algo2rithm for blind dignal separation [C]. In Neural Inf or2rnation Processing System, 1996 : 757-763.
  • 6Cardoso J F, Souloumiac A. Blind beam.forming for non-Gaussian signals[J]. I EE Proc. F, 1995, 140 (6): 214-224.
  • 7Comon P. Independent component analysis, A new concept [J]. Signal Processing, 1994, 36 (3): 287-314.
  • 8Hyvarinen A, Oja E. A fast fixed-point algorithm for in2dependent component analysis [J]. Neural Computation, 1998,9 (7) : 1483-1492.
  • 9Karvanen J, Eriksson J, Koivunen V. Maximum likely2hood estimation of ICA model for wide class of source dis2 tributions [C]. In Processing of the 2000 IEEE Work2shop on Neural Networks for Signal Processing X, Sydney, Australia, 2000,445-454.
  • 10任文军,宋向东.核密度估计中递归方法选择窗宽及其应用[J].长春大学学报,2009,19(2):23-26. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部