期刊文献+

On Two Theorems of Finite Solvable Groups

On Two Theorems of Finite Solvable Groups
原文传递
导出
摘要 For a finite group G, let T(G) denote a set of primes such that a prime p belongs to T(G) if and only if p is a divisor of the index of some maximal subgroup of G. It is proved that if G satisfies any one of the following conditions: (1) G has a p-complement for each p∈T(G); (2)│T(G)│= 2: (3) the normalizer of a Sylow p-subgroup of G has prime power index for each odd prime p∈T(G); then G either is solvable or G/Sol(G)≌PSL(2, 7) where Sol(G) is the largest solvable normal subgroup of G. For a finite group G, let T(G) denote a set of primes such that a prime p belongs to T(G) if and only if p is a divisor of the index of some maximal subgroup of G. It is proved that if G satisfies any one of the following conditions: (1) G has a p-complement for each p∈T(G); (2)│T(G)│= 2: (3) the normalizer of a Sylow p-subgroup of G has prime power index for each odd prime p∈T(G); then G either is solvable or G/Sol(G)≌PSL(2, 7) where Sol(G) is the largest solvable normal subgroup of G.
作者 Shi Rong LI
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第4期797-802,共6页 数学学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.10161001) the Natural Science Foundation of Guangxi of China(0249001)
关键词 Finite solvable group The index of a maximal subgroup Simple group Finite solvable group, The index of a maximal subgroup, Simple group
  • 相关文献

参考文献8

  • 1Huppert, B: Eedliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1976.
  • 2Guo, W.: The theory of classes of groups, Science Press Kluwer Academic Publishers, Beijing, New York,2000.
  • 3Adnan, S.: A characterization of PSL(2, 7). J. London Math. Soc., 17(2), 215-225 (1976).
  • 4Adnan, S.: A further characterization of projective special linear group. J. Austral. Math. Soc. Ser. A,24, 112-116 (1977).
  • 5Shi, W.: A characterization of PSL(2, 7).J. Austral, Math. Soc. Ser. A, 26, 354-356 (1984).
  • 6Conway, .I.H., Curtis, R. T.: Norron, S. P., Parken, R. A., Wilson, R. A.: Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
  • 7Guralnick, R. M.: Subgroups of Prime Power Index in a Simple Group. J. Algebra, 81, 304-311 (1983).
  • 8Dixon, J. D.: Permutation Groups, New York, Berlin, Heidelberg, Springer-Verlag, 1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部